
Robust Control Toolbox™ 3
Getting Started Guide

Gary Balas
Richard Chiang
Andy Packard
Michael Safonov

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Robust Control Toolbox™ Getting Started Guide

© COPYRIGHT 2005–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2005 First printing New for Version 3.0.2 (Release 14SP3)
March 2006 Online only Revised for Version 3.1 (Release 2006a)
September 2006 Online only Revised for Version 3.1.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.4.1 (Release 2010a)
September 2010 Online only Revised for Version 3.5 (Release 2010b)

Contents

Introduction

1
Product Overview . 1-2
Required Software . 1-2

Modeling Uncertainty . 1-3
Example: ACC Benchmark Problem 1-3

Worst-Case Performance . 1-7
Example: ACC Two-Cart Benchmark Problem 1-7

Synthesis of Robust MIMO Controllers 1-10
Example: Designing a Controller with LOOPSYN 1-10

Model Reduction and Approximation 1-14
Example: NASA HiMAT Controller Order Reduction 1-14

LMI Solvers . 1-18

Extends Control System Toolbox Capabilities 1-19

About the Authors . 1-20

Bibliography . 1-21

Multivariable Loop Shaping

2
Tradeoff Between Performance and Robustness 2-2
Norms and Singular Values . 2-3

v

Typical Loop Shapes, S and T Design 2-5
Singular Values . 2-6
Guaranteed Gain/Phase Margins in MIMO Systems 2-11

Using LOOPSYN to Do H-Infinity Loop Shaping 2-14
Example: NASA HiMAT Loop Shaping 2-14
Design Specifications . 2-16
MATLAB Commands for a LOOPSYN Design 2-16

Using MIXSYN for H-Infinity Loop Shaping 2-21
Example: NASA HiMAT Design Using MIXSYN 2-22

Loop-Shaping Commands . 2-24

Model Reduction for Robust Control

3
Introduction . 3-2
Hankel Singular Values . 3-2

Overview of Model Reduction Techniques 3-5

Approximating Plant Models — Additive Error
Methods . 3-7

Approximating Plant Models — Multiplicative Error
Method . 3-9

Using Modal Algorithms . 3-11
Rigid Body Dynamics . 3-11

Reducing Large-Scale Models . 3-14

Using Normalized Coprime Factor Methods 3-15

Bibliography . 3-16

vi Contents

Robustness Analysis

4
Uncertainty Modeling . 4-2
Creating Uncertain Models of Dynamic Systems 4-2
Creating Uncertain Parameters . 4-3
Quantifying Unmodeled Dynamics 4-6

Robustness Analysis . 4-9

Multiinput, Multioutput Robustness Analysis 4-14
Adding Independent Input Uncertainty to Each
Channel . 4-15

Closed-Loop Robustness Analysis . 4-17
Nominal Stability Margins . 4-19
Robustness of Stability Model Uncertainty 4-21

Worst-Case Gain Analysis . 4-22

Summary of Robustness Analysis Tools 4-25

H-Infinity and Mu Synthesis

5
Interpretation of H-Infinity Norm 5-2
Norms of Signals and Systems . 5-2
Using Weighted Norms to Characterize Performance 5-3

H-Infinity Performance . 5-9
Performance as Generalized Disturbance Rejection 5-9
Robustness in the H-Infinity Framework 5-15

Functions for Control Design . 5-17

Application of H-Infinity and Mu to Active Suspension
Control . 5-19

vii

Quarter Car Suspension Model . 5-19
Linear H-Infinity Controller Design 5-21
H-Infinity Control Design 1 . 5-22
H-Infinity Control Design 2 . 5-24
Control Design via Mu Synthesis . 5-29

H-Infinity Tuning of Fixed Control Structures 5-36
About H-Infinity Synthesis of Structured Controllers 5-36
Formulating Design Requirements as H-Infinity
Constraints . 5-37

Describing your Control Architecture 5-38
Defining the Tunable Controller Elements 5-45
Tuning the Controller Parameters . 5-46
Validating the Controller Design . 5-48
Application Examples . 5-49

Bibliography . 5-50

Examples

A
Getting Started . A-2

Index

viii Contents

1

Introduction

• “Product Overview” on page 1-2

• “Modeling Uncertainty” on page 1-3

• “Worst-Case Performance” on page 1-7

• “Synthesis of Robust MIMO Controllers” on page 1-10

• “Model Reduction and Approximation” on page 1-14

• “LMI Solvers” on page 1-18

• “Extends Control System Toolbox Capabilities” on page 1-19

• “About the Authors” on page 1-20

• “Bibliography” on page 1-21

1 Introduction

Product Overview
The Robust Control Toolbox™ product is a collection of functions and tools
that help you analyze and design multiinput-multioutput (MIMO) control
systems with uncertain elements. You can build uncertain LTI system models
containing uncertain parameters and uncertain dynamics. You get tools to
analyze MIMO system stability margins and worst case performance.

The toolbox includes a selection of control synthesis tools that compute
controllers that optimize worst-case performance and identify worst-case
parameter values. The toolbox lets you simplify and reduce the order of
complex models with model reduction tools that minimize additive and
multiplicative error bounds. It provides tools for implementing advanced
robust control methods like H∞, H2, linear matrix inequalities (LMI), and
µ-synthesis robust control. You can shape MIMO system frequency responses
and design uncertainty tolerant controllers.

Required Software
Robust Control Toolbox software requires that you have installed Control
System Toolbox™ software.

1-2

Modeling Uncertainty

Modeling Uncertainty
At the heart of robust control is the concept of an uncertain LTI system.
Model uncertainty arises when system gains or other parameters are not
precisely known, or can vary over a given range. Examples of real parameter
uncertainties include uncertain pole and zero locations and uncertain gains.
You can also have unstructured uncertainties, by which is meant complex
parameter variations satisfying given magnitude bounds.

With Robust Control Toolbox software you can create uncertain LTI models
as MATLAB® objects specifically designed for robust control applications. You
can build models of complex systems by combining models of subsystems
using addition, multiplication, and division, as well as with Control System
Toolbox commands like feedback and lft.

Example: ACC Benchmark Problem
For instance, consider the two-cart "ACC Benchmark" system [13] consisting
of two frictionless carts connected by a spring shown as follows.

ACC Benchmark Problem

The system has the block diagram model shown below, where the individual
carts have the respective transfer functions.

G s
m s

G s
m s

1
1

2

2
2

2

1

1

() =

() = .

1-3

1 Introduction

The parameters m1, m2, and k are uncertain, equal to one plus or minus 20%:

m1 = 1 – 0.2
m2 = 1 – 0.2
k = 1 – 0.2

"ACC Benchmark" Two-Cart System Block Diagram y1 = P(s) u1

The upper dashed-line block has transfer function matrix F(s):

F s
G s

G s() = ()
⎡

⎣
⎢

⎤

⎦
⎥ −[] +

−
⎡

⎣
⎢

⎤

⎦
⎥ ()⎡⎣ ⎤⎦

0
1 1

1
1

0
1

2 .

This code builds the uncertain system model P shown above:

% Create the uncertain real parameters m1, m2, & k
m1 = ureal('m1',1,'percent',20);
m2 = ureal('m2',1,'percent',20);
k = ureal('k',1,'percent',20);

s = zpk('s'); % create the Laplace variable s
G1 = ss(1/s^2)/m1; % Cart 1
G2 = ss(1/s^2)/m2; % Cart 2

% Now build F and P

1-4

Modeling Uncertainty

F = [0;G1]*[1 -1]+[1;-1]*[0,G2];
P = lft(F,k) % close the loop with the spring k

The variable P is a SISO uncertain state-space (USS) object with four states
and three uncertain parameters, m1, m2, and k. You can recover the nominal
plant with the command

zpk(P.nominal)

which returns

Zero/pole/gain:
1

s^2 (s^2 + 2)

If the uncertain model P(s) has LTI negative feedback controller

C s
s

s
() =

+()
+()

100 1

0 001 1

3

3.

then you can form the controller and the closed-loop system y1 = T(s) u1 and
view the closed-loop system’s step response on the time interval from t=0 to
t=0.1 for a Monte Carlo random sample of five combinations of the three
uncertain parameters k, m1, and m2 using this code:

C=100*ss((s+1)/(.001*s+1))^3 % LTI controller
T=feedback(P*C,1); % closed-loop uncertain system
step(usample(T,5),.1);

The resulting plot is shown below.

1-5

1 Introduction

Monte Carlo Sampling of Uncertain System’s Step Response

1-6

Worst-Case Performance

Worst-Case Performance
To be robust, your control system should meet your stability and performance
requirements for all possible values of uncertain parameters. Monte Carlo
parameter sampling via usample can be used for this purpose as shown in
Monte Carlo Sampling of Uncertain System’s Step Response on page 1-6, but
Monte Carlo methods are inherently hit or miss. With Monte Carlo methods,
you might need to take an impossibly large number of samples before you hit
upon or near a worst-case parameter combination.

Robust Control Toolbox software gives you a powerful assortment of
robustness analysis commands that let you directly calculate upper and lower
bounds on worst-case performance without random sampling.

Worst-Case Robustness Analysis Commands

loopmargin Comprehensive analysis of feedback loop

loopsens Sensitivity functions of feedback loop

ncfmargin Normalized coprime stability margin of feedback
loop

robustperf Robust performance of uncertain systems

robuststab Stability margins of uncertain systems

wcgain Worst-case gain of an uncertain system

wcmargin Worst-case gain/phase margins for feedback loop

wcsens Worst-case sensitivity functions of feedback loop

Example: ACC Two-Cart Benchmark Problem
Returning to the “Example: ACC Benchmark Problem” on page 1-3, the
closed loop system is:

T=feedback(P*C,1); % Closed-loop uncertain system

This uncertain state-space model T has three uncertain parameters, k, m1,
and m2, each equal to 1±20% uncertain variation. To analyze whether the
closed-loop system T is robustly stable for all combinations of values for these
three parameters, you can execute the commands:

1-7

1 Introduction

[StabilityMargin,Udestab,REPORT] = robuststab(T);
REPORT

This displays the REPORT:

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 311% of modeled uncertainty.
-- A destabilizing combination of 500% the modeled uncertainty exists,

causing an instability at 44.3 rad/s.

The report tells you that the control system is robust for all parameter
variations in the ±20% range, and that the smallest destabilizing combination
of real variations in the values k, m1, and m2 has sizes somewhere between
311% and 500% greater than ±20%, i.e., between ±62.2% and ±100%. The
value Udestab returns an estimate of the 500% destabilizing parameter
variation combination:

Udestab =
k: 1.2174e-005

m1: 1.2174e-005
m2: 2.0000.

1-8

Worst-Case Performance

Uncertain System Closed-Loop Bode Plots

You have a comfortable safety margin of between 311% to 500% larger
than the anticipated ±20% parameter variations before the closed loop
goes unstable. But how much can closed-loop performance deteriorate for
parameter variations constrained to lie strictly within the anticipated ±20%
range? The following code computes worst-case peak gain of T, and estimates
the frequency and parameter values at which the peak gain occurs:

[PeakGain,Uwc] = wcgain(T);
Twc=usubs(T,Uwc);
% Worst case closed-loop system T
Trand=usample(T,4);
% 4 random samples of uncertain system T
bodemag(Twc,'r',Trand,'b-.',{.5,50}); % Do bode plot
legend('T_{wc} - worst-case',...
'T_{rand} - random samples',3);

The resulting plot is shown in Uncertain System Closed-Loop Bode Plots
on page 1-9.

1-9

1 Introduction

Synthesis of Robust MIMO Controllers
You can design controllers for multiinput-multioutput (MIMO) LTI models
with your Robust Control Toolbox software using the following command.

Robust Control Synthesis Commands

h2hinfsyn Mixed H2/H∞ controller synthesis

h2syn H2 controller synthesis

hinfsyn H∞ controller synthesis

loopsyn H∞ loop-shaping controller synthesis

ltrsyn Loop-transfer recovery controller synthesis

mixsyn H∞ mixed-sensitivity controller synthesis

ncfsyn H∞ normalized coprime factor controller synthesis

sdhinfsyn Sampled-data H∞ controller synthesis

Example: Designing a Controller with LOOPSYN
One of the most powerful yet simple controller synthesis tools is loopsyn.
Given an LTI plant, you specify the shape of the open-loop systems frequency
response plot that you want, then loopsyn computes a stabilizing controller
that best approximates your specified loop shape.

For example, consider the 2-by-2 NASA HiMAT aircraft model (Safonov,
Laub, and Hartmann [8]) depicted in the following figure. The control
variables are elevon and canard actuators (δe and δc). The output variables
are angle of attack (α) and attitude angle (θ). The model has six states:

x

x
x
x
x
x
x

x
x

e

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
1

2

3

4

5

6

�

�

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

1-10

Synthesis of Robust MIMO Controllers

where xe and xδ are elevator and canard actuator states.

Aircraft Configuration and Vertical Plane Geometry

You can enter the state-space matrices for this model with the following code:

% NASA HiMAT model G(s)

ag =[-2.2567e-02 -3.6617e+01 -1.8897e+01 -3.2090e+01 3.2509e+00 -7.6257e-01;

9.2572e-05 -1.8997e+00 9.8312e-01 -7.2562e-04 -1.7080e-01 -4.9652e-03;

1.2338e-02 1.1720e+01 -2.6316e+00 8.7582e-04 -3.1604e+01 2.2396e+01;

0 0 1.0000e+00 0 0 0;

0 0 0 0 -3.0000e+01 0;

0 0 0 0 0 -3.0000e+01];

bg = [0 0;

0 0;

0 0;

0 0;

30 0;

1-11

1 Introduction

0 30];

cg = [0 1 0 0 0 0;

0 0 0 1 0 0];

dg = [0 0;

0 0];

G=ss(ag,bg,cg,dg);

To design a controller to shape the frequency response (sigma) plot so that the
system has approximately a bandwidth of 10 rad/s, you can set as your target
desired loop shape Gd(s)=10/s, then use loopsyn(G,Gd) to find a loop-shaping
controller for G that optimally matches the desired loop shape Gd by typing:

s=zpk('s'); w0=10; Gd=w0/(s+.001);
[K,CL,GAM]=loopsyn(G,Gd); % Design a loop-shaping controller K

% Plot the results
sigma(G*K,'r',Gd,'k-.',Gd/GAM,'k:',Gd*GAM,'k:',{.1,30})
figure ;T=feedback(G*K,eye(2));
sigma(T,ss(GAM),'k:',{.1,30});grid

The value of γ= GAM returned is an indicator of the accuracy to which
the optimal loop shape matches your desired loop shape and is an upper
bound on the resonant peak magnitude of the closed-loop transfer function
T=feedback(G*K,eye(2)). In this case, γ = 1.6024 = 4 dB — see the next
figure.

1-12

Synthesis of Robust MIMO Controllers

MIMO Robust Loop Shaping with loopsyn(G,Gd)

The achieved loop shape matches the desired target Gd to within about γ dB.

1-13

1 Introduction

Model Reduction and Approximation
Complex models are not always required for good control. Unfortunately,
however, optimization methods (including methods based on H∞, H2, and
µ-synthesis optimal control theory) generally tend to produce controllers
with at least as many states as the plant model. For this reason, Robust
Control Toolbox software offers you an assortment of model-order reduction
commands that help you to find less complex low-order approximations to
plant and controller models.

Model Reduction Commands

reduce Main interface to model approximation algorithms

balancmr Balanced truncation model reduction

bstmr Balanced stochastic truncation model reduction

hankelmr Optimal Hankel norm model approximations

modreal State-space modal truncation/realization

ncfmr Balanced normalized coprime factor model reduction

schurmr Schur balanced truncation model reduction

slowfast State-space slow-fast decomposition

stabsep State-space stable/antistable decomposition

imp2ss Impulse response to state-space approximation

Among the most important types of model reduction methods are minimize
bounds methods on additive, multiplicative, and normalized coprime factor
(NCF) model error. You can access all three of these methods using the
command reduce.

Example: NASA HiMAT Controller Order Reduction
For instance, the NASA HiMAT model considered in the last section has eight
states, and the optimal loop-shaping controller turns out to have 16 states.
Using model reduction, you can remove at least some of the states without
appreciably affecting stability or closed-loop performance. For controller

1-14

Model Reduction and Approximation

order reduction, the NCF model reduction is particularly useful, and it works
equally well with controllers that have poles anywhere in the complex plane.

For the NASA HiMAT design in the last section, you can type

hankelsv(K,'ncf','log');

which displays a logarithmic plot of the NCF Hankel singular values — see
the following figure.

Hankel Singular Values of Coprime Factorization of K

Theory says that, without danger of inducing instability, you can confidently
discard at least those controller states that have NCF Hankel singular values
that are much smaller than ncfmargin(G,K).

1-15

1 Introduction

Compute ncfmargin(G,K) and add it to your Hankel singular values plot.

hankelsv(K,'ncf','log');v=axis;
hold on; plot(v(1:2), ncfmargin(G,K)*[1 1],'--'); hold off

Five of the 16 NCF Hankel Singular Values of HiMAT Controller K Are Small
Compared to ncfmargin(G,K)

In this case, you can safely discard 5 of the 16 states of K and compute an
11-state reduced controller by typing:

K1=reduce(K,11,'errortype','ncf');

The result is plotted in the following figure.

sigma(G*K1,'b',G*K,'r--',{.1,30});

1-16

Model Reduction and Approximation

HiMAT with 11-State Controller K1 vs. Original 16-State Controller K

The picture above shows that low-frequency gain is decreased considerably for
inputs in one vector direction. Although this does not affect stability, it affects
performance. If you wanted to better preserve low-frequency performance,
you would discard fewer than five of the 16 states of K.

1-17

1 Introduction

LMI Solvers
At the core of many emergent robust control analysis and synthesis routines
are powerful general-purpose functions for solving a class of convex nonlinear
programming problems known as linear matrix inequalities. The LMI
capabilities are invoked by Robust Control Toolbox software functions
that evaluate worst-case performance, as well as functions like hinfsyn
and h2hinfsyn. Some of the main functions that help you access the LMI
capabilities of the toolbox are shown in the following table.

Specification of LMIs

lmiedit GUI for LMI specification

setlmis Initialize the LMI description

lmivar Define a new matrix variable

lmiterm Specify the term content of an LMI

newlmi Attach an identifying tag to new LMIs

getlmis Get the internal description of the LMI system

LMI Solvers

feasp Test feasibility of a system of LMIs

gevp Minimize generalized eigenvalue with LMI constraints

mincx Minimize a linear objective with LMI constraints

dec2mat Convert output of the solvers to values of matrix
variables

Evaluation of LMIs/Validation of Results

evallmi Evaluate for given values of the decision variables

showlmi Return the left and right sides of an evaluated LMI

Complete documentation is available in “LMI Lab”.

1-18

Extends Control System Toolbox™ Capabilities

Extends Control System Toolbox Capabilities
Robust Control Toolbox software is designed to work with Control System
Toolbox software. Robust Control Toolbox software extends the capabilities
of Control System Toolbox software and leverages the LTI and plotting
capabilities of Control System Toolbox software. The major analysis and
synthesis commands in Robust Control Toolbox software accept LTI object
inputs, e.g., LTI state-space systems produced by commands such as:

G=tf(1,[1 2 3])
G=ss([-1 0; 0 -1], [1;1],[1 1],3)

The uncertain system (USS) objects in Robust Control Toolbox software
generalize the Control System Toolbox LTI SS objects and help ease the
task of analyzing and plotting uncertain systems. You can do many of
the same algebraic operations on uncertain systems that are possible for
LTI objects (multiply, add, invert), and Robust Control Toolbox software
provides USS uncertain system extensions of Control System Toolbox software
interconnection and plotting functions like feedback, lft, and bode.

1-19

1 Introduction

About the Authors
Professor Andy Packard is with the Faculty of Mechanical Engineering
at the University of California, Berkeley. His research interests include
robustness issues in control analysis and design, linear algebra and numerical
algorithms in control problems, applications of system theory to aerospace
problems, flight control, and control of fluid flow.

Professor Gary Balas is with the Faculty of Aerospace Engineering &
Mechanics at the University of Minnesota and is president of MUSYN Inc.
His research interests include aerospace control systems, both experimental
and theoretical.

Dr. Michael Safonov is with the Faculty of Electrical Engineering at the
University of Southern California. His research interests include control
and decision theory.

Dr. Richard Chiang is employed by Boeing Satellite Systems, El Segundo,
CA. He is a Boeing Technical Fellow and has been working in the aerospace
industry over 25 years. In his career, Richard has designed 3 flight control
laws, 12 spacecraft attitude control laws, and 3 large space structure vibration
controllers, using modern robust control theory and the tools he built in this
toolbox. His research interests include robust control theory, model reduction,
and in-flight system identification. Working in industry instead of academia,
Richard serves a unique role in our team, bridging the gap between theory
and reality.

The linear matrix inequality (LMI) portion of Robust Control Toolbox software
was developed by these two authors:

Dr. Pascal Gahinet is employed by MathWorks. His research interests
include robust control theory, linear matrix inequalities, numerical linear
algebra, and numerical software for control.

Professor Arkadi Nemirovski is with the Faculty of Industrial Engineering
and Management at Technion, Haifa, Israel. His research interests include
convex optimization, complexity theory, and nonparametric statistics.

1-20

Bibliography

Bibliography
[1] Boyd, S.P., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix
Inequalities in Systems and Control Theory, Philadelphia, PA, SIAM, 1994.

[2] Dorato, P. (editor), Robust Control, New York, IEEE Press, 1987.

[3] Dorato, P., and Yedavalli, R.K. (editors), Recent Advances in Robust
Control, New York, IEEE Press, 1990.

[4] Doyle, J.C., and Stein, G., “Multivariable Feedback Design: Concepts
for a Classical/Modern Synthesis,” IEEE Trans. on Automat. Contr., 1981,
AC-26(1), pp. 4-16.

[5] El Ghaoui, L., and Niculescu, S., Recent Advances in LMI Theory for
Control, Philadelphia, PA, SIAM, 2000.

[6] Lehtomaki, N.A., Sandell, Jr., N.R., and Athans, M., “Robustness Results
in Linear-Quadratic Gaussian Based Multivariable Control Designs,” IEEE
Trans. on Automat. Contr., Vol. AC-26, No. 1, Feb. 1981, pp. 75-92.

[7] Safonov, M.G., Stability and Robustness of Multivariable Feedback
Systems, Cambridge, MA, MIT Press, 1980.

[8] Safonov, M.G., Laub, A.J., and Hartmann, G., “Feedback Properties of
Multivariable Systems: The Role and Use of Return Difference Matrix,” IEEE
Trans. of Automat. Contr., 1981, AC-26(1), pp. 47-65.

[9] Safonov, M.G., Chiang, R.Y., and Flashner, H., “H∞ Control Synthesis
for a Large Space Structure,” Proc. of American Contr. Conf., Atlanta, GA,
June 15-17, 1988.

[10] Safonov, M.G., and Chiang, R.Y., “CACSD Using the State-Space L∞
Theory — A Design Example,” IEEE Trans. on Automatic Control, 1988,
AC-33(5), pp. 477-479.

[11] Sanchez-Pena, R.S., and Sznaier, M., Robust Systems Theory and
Applications, New York, Wiley, 1998.

1-21

1 Introduction

[12] Skogestad, S., and Postlethwaite, I., Multivariable Feedback Control,
New York, Wiley, 1996.

[13] Wie, B., and Bernstein, D.S., “A Benchmark Problem for Robust
Controller Design,” Proc. American Control Conf., San Diego, CA, May 23-25,
1990; also Boston, MA, June 26-28, 1991.

[14] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control,
Englewood Cliffs, NJ, Prentice Hall, 1996.

1-22

2

Multivariable Loop Shaping

• “Tradeoff Between Performance and Robustness” on page 2-2

• “Typical Loop Shapes, S and T Design” on page 2-5

• “Using LOOPSYN to Do H-Infinity Loop Shaping” on page 2-14

• “Using MIXSYN for H-Infinity Loop Shaping” on page 2-21

• “Loop-Shaping Commands” on page 2-24

2 Multivariable Loop Shaping

Tradeoff Between Performance and Robustness
When the plant modeling uncertainty is not too big, you can design high-gain,
high-performance feedback controllers. High loop gains significantly larger
than 1 in magnitude can attenuate the effects of plant model uncertainty
and reduce the overall sensitivity of the system to plant noise. But if your
plant model uncertainty is so large that you do not even know the sign of
your plant gain, then you cannot use large feedback gains without the risk
that the system will become unstable. Thus, plant model uncertainty can
be a fundamental limiting factor in determining what can be achieved with
feedback.

Multiplicative Uncertainty: Given an approximate model of the plant G0
of a plant G, the multiplicative uncertainty ΔM of the model G0 is defined

as ΔM G G G= −()−
0

1
0

or, equivalently,

G I GM= +()Δ 0.

Plant model uncertainty arises from many sources. There might be
small unmodeled time delays or stray electrical capacitance. Imprecisely
understood actuator time constants or, in mechanical systems, high-frequency
torsional bending modes and similar effects can be responsible for plant
model uncertainty. These types of uncertainty are relatively small at lower
frequencies and typically increase at higher frequencies.

In the case of single-input/single-output (SISO) plants, the frequency at
which there are uncertain variations in your plant of size |ΔM|=2 marks
a critical threshold beyond which there is insufficient information about
the plant to reliably design a feedback controller. With such a 200% model
uncertainty, the model provides no indication of the phase angle of the true
plant, which means that the only way you can reliably stabilize your plant is
to ensure that the loop gain is less than 1. Allowing for an additional factor
of 2 margin for error, your control system bandwidth is essentially limited

2-2

Tradeoff Between Performance and Robustness

to the frequency range over which your multiplicative plant uncertainty ΔM
has gain magnitude |ΔM|<1.

Norms and Singular Values
For MIMO systems the transfer functions are matrices, and relevant
measures of gain are determined by singular values, H∞, and H2 norms, which
are defined as follows:

H2 and H• Norms The H2-norm is the energy of the impulse response
of plant G. The H∞-norm is the peak gain of G across all frequencies and all
input directions.

Another important concept is the notion of singular values.

Singular Values: The singular values of a rank r matrix A Cm n∈ × , denoted

σi, are the nonnegative square roots of the eigenvalues of A A* ordered such
that σ1 ≥ σ2 ≥ ... ≥σp > 0, p ≤ min{m, n}.

If r < p then there are p – r zero singular values, i.e., σr+1 = σr+2 = ... =σp = 0.

The greatest singular value σ1 is sometimes denoted

 A() = 1.

When A is a square n-by-n matrix, then the nth singular value (i.e., the least
singular value) is denoted

 A n() � .

Properties of Singular Values
Some useful properties of singular values are:

2-3

2 Multivariable Loop Shaping

A
Ax

x

A
Ax

x

x C

x C

h

h

() =

() =

∈

∈

max

min

These properties are especially important because they establish that the
greatest and least singular values of a matrix A are the maximal and minimal
"gains" of the matrix as the input vector x varies over all possible directions.

For stable continuous-time LTI systems G(s), the H2-norm and the H∞-norms
are defined terms of the frequency-dependent singular values of G(jω):

H2-norm:

G G j di
i

p

2
2

1

1
2

�

 ⎡
⎣⎢

⎤
⎦⎥

()()()
=

−∞

∞ ∑∫

H∞-norm:

G G j2 � sup

 ()()

where sup denotes the least upper bound.

2-4

Typical Loop Shapes, S and T Design

Typical Loop Shapes, S and T Design
Consider the multivariable feedback control system shown in the following
figure. In order to quantify the multivariable stability margins and
performance of such systems, you can use the singular values of the closed-loop
transfer function matrices from r to each of the three outputs e, u, and y, viz.

S s I L s

R s K s I L s

T s L s I L s

def

def

def

() = + ()()

() = () + ()()

() = () + ()

−

−

1

1

(() = − ()−1
I S s

where the L(s) is the loop transfer function matrix

L s G s K s() = () (). (2-1)

Block Diagram of the Multivariable Feedback Control System

The two matrices S(s) and T(s) are known as the sensitivity function and
complementary sensitivity function, respectively. The matrix R(s) has no
common name. The singular value Bode plots of each of the three transfer
function matrices S(s), R(s), and T(s) play an important role in robust
multivariable control system design. The singular values of the loop transfer
function matrix L(s) are important because L(s) determines the matrices
S(s) and T(s).

2-5

2 Multivariable Loop Shaping

Singular Values
The singular values of S(jω) determine the disturbance attenuation, because
S(s) is in fact the closed-loop transfer function from disturbance d to plant
output y— see Block Diagram of the Multivariable Feedback Control System
on page 2-5. Thus a disturbance attenuation performance specification can
be written as

 S j W j()() ≤ ()−
1

1
(2-2)

where W j1
1− () is the desired disturbance attenuation factor. Allowing

W j1 () to depend on frequency ω enables you to specify a different
attenuation factor for each frequency ω.

The singular value Bode plots of R(s) and of T(s) are used to measure
the stability margins of multivariable feedback designs in the face of
additive plant perturbations ΔA and multiplicative plant perturbations ΔM,
respectively. See the following figure.

Consider how the singular value Bode plot of complementary sensitivity T(s)
determines the stability margin for multiplicative perturbations ΔM. The
multiplicative stability margin is, by definition, the "size" of the smallest
stable ΔM(s) that destabilizes the system in the figure below when ΔA = 0.

2-6

Typical Loop Shapes, S and T Design

Additive/Multiplicative Uncertainty

Taking ΔM j()() to be the definition of the "size" of ΔM(jω), you have the
following useful characterization of "multiplicative" stability robustness:

Multiplicative Robustness: The size of the smallest destabilizing
multiplicative uncertainty ΔM(s) is:

ΔM j
T j

()() =
()()
1

.

The smaller is T j()() , the greater will be the size of the smallest
destabilizing multiplicative perturbation, and hence the greater will be the
stability margin.

A similar result is available for relating the stability margin in the face of

additive plant perturbations ΔA(s) to R(s) if you take Δ A j()() to be the
definition of the "size" of ΔA(jω) at frequency ω.

2-7

2 Multivariable Loop Shaping

Additive Robustness: The size of the smallest destabilizing additive
uncertainty ΔA is:

Δ A j
R j

()() =
()()
1

.

As a consequence of robustness theorems 1 and 2, it is common to specify the
stability margins of control systems via singular value inequalities such as

 R j W j{ }() ≤ ()−
2

1
(2-3)

 T j W j{ }() ≤ ()−
3

1
(2-4)

where |W2(jω)| and |W3(jω)| are the respective sizes of the largest
anticipated additive and multiplicative plant perturbations.

It is common practice to lump the effects of all plant uncertainty into a
single fictitious multiplicative perturbation ΔM, so that the control design
requirements can be written

1
1 3

1

i
iS j

W j T j W j
()() ≥ () []() ≤ ()−;

as shown in Singular Value Specifications on L, S, and T on page 2-11.

It is interesting to note that in the upper half of the figure (above the 0 dB
line),

L j
S j

()() ≈
()()
1

while in the lower half of Singular Value Specifications on L, S, and T on page
2-11 (below the 0 dB line),

2-8

Typical Loop Shapes, S and T Design

 L j T j()() ≈ ()().

This results from the fact that

S s I L s L s
def

() = + ()() ≈ ()− −1 1

if L s()() � 1 , and

T s L s I L s L s
def

() = () + ()() ≈ ()−1

if L s()() � 1 .

2-9

2 Multivariable Loop Shaping

2-10

Typical Loop Shapes, S and T Design

Singular Value Specifications on L, S, and T

Thus, it is not uncommon to see specifications on disturbance attenuation
and multiplicative stability margin expressed directly in terms of forbidden
regions for the Bode plots of σi(L(jω)) as "singular value loop shaping"
requirements, either as specified upper/lower bounds or as a target desired
loop shape — see the preceding figure.

Guaranteed Gain/Phase Margins in MIMO Systems
For those who are more comfortable with classical single-loop concepts, there
are the important connections between the multiplicative stability margins

predicted by T() and those predicted by classical M-circles, as found on the
Nichols chart. Indeed in the single-input/single-output case,

2-11

2 Multivariable Loop Shaping

T j
L j

L j
()() =

()
+ ()1

which is precisely the quantity you obtain from Nichols chart M-circles. Thus,

T ∞ is a multiloop generalization of the closed-loop resonant peak magnitude
which, as classical control experts will recognize, is closely related to the
damping ratio of the dominant closed-loop poles. Also, it turns out that you

can relate T ∞ , S ∞ to the classical gain margin GM and phase margin θM in
each feedback loop of the multivariable feedback system of Block Diagram of
the Multivariable Feedback Control System on page 2-5 via the formulas:

G
T

G

S

T

T

M

M

M

M

≥ +

≥ +
−

≥
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≥
⎛

⎝
⎜⎜

⎞

∞

∞

−

∞

−

∞

1
1

1
1

1
1

2
1

2

2
1

2

1

1

sin

sin
⎠⎠
⎟⎟.

(See [6].) These formulas are valid provided S ∞ and T ∞ are larger than 1,
as is normally the case. The margins apply even when the gain perturbations
or phase perturbations occur simultaneously in several feedback channels.

The infinity norms of S and T also yield gain reduction tolerances. The gain
reduction tolerance gm is defined to be the minimal amount by which the gains
in each loop would have to be decreased in order to destabilize the system.
Upper bounds on gm are as follows:

2-12

Typical Loop Shapes, S and T Design

g
T

g

S

M

M

≤ −

≤
+

∞

∞

1
1

1

1
1

.

2-13

2 Multivariable Loop Shaping

Using LOOPSYN to Do H-Infinity Loop Shaping
The command loopsyn lets you design a stabilizing feedback controller to
optimally shape the open loop frequency response of a MIMO feedback control
system to match as closely as possible a desired loop shape Gd — see the
preceding figure. The basic syntax of the loopsyn loop-shaping controller
synthesis command is:

K = loopsyn(G,Gd)

Here G is the LTI transfer function matrix of a MIMO plant model, Gd is
the target desired loop shape for the loop transfer function L=G*K, and K is
the optimal loop-shaping controller. The LTI controller K has the property
that it shapes the loop L=G*K so that it matches the frequency response of Gd
as closely as possible, subject to the constraint that the compensator must
stabilize the plant model G.

Example: NASA HiMAT Loop Shaping
To see how the loopsyn command works in practice to address robustness
and performance tradeoffs, consider again the NASA HiMAT aircraft model
taken from the paper of Safonov, Laub, and Hartmann [8]. The longitudinal
dynamics of the HiMAT aircraft trimmed at 25000 ft and 0.9 Mach are
unstable and have two right-half-plane phugoid modes. The linear model
has state-space realization G(s) = C(Is – A)–1B with six states, with the first
four states representing angle of attack (α) and attitude angle (θ) and their
rates of change, and the last two representing elevon and canard control
actuator dynamics — see Aircraft Configuration and Vertical Plane Geometry
on page 2-15.

ag =[

-2.2567e-02 -3.6617e+01 -1.8897e+01 -3.2090e+01 3.2509e+00 -7.6257e-01;

9.2572e-05 -1.8997e+00 9.8312e-01 -7.2562e-04 -1.7080e-01 -4.9652e-03;

1.2338e-02 1.1720e+01 -2.6316e+00 8.7582e-04 -3.1604e+01 2.2396e+01;

0 0 1.0000e+00 0 0 0;

0 0 0 0 -3.0000e+01 0;

0 0 0 0 0 -3.0000e+01];

bg = [0 0;

0 0;

0 0;

2-14

Using LOOPSYN to Do H-Infinity Loop Shaping

0 0;

30 0;

0 30];

cg = [0 1 0 0 0 0;

0 0 0 1 0 0];

dg = [0 0;

0 0];

G=ss(ag,bg,cg,dg);

The control variables are elevon and canard actuators (δe and δc). The output
variables are angle of attack (α) and attitude angle (θ).

Aircraft Configuration and Vertical Plane Geometry

This model is good at frequencies below 100 rad/s with less than 30%
variation between the true aircraft and the model in this frequency range.
However as noted in [8], it does not reliably capture very high-frequency
behaviors, because it was derived by treating the aircraft as a rigid body and

2-15

2 Multivariable Loop Shaping

neglecting lightly damped fuselage bending modes that occur at somewhere
between 100 and 300 rad/s. These unmodeled bending modes might cause as
much as 20 dB deviation (i.e., 1000%) between the frequency response of
the model and the actual aircraft for frequency ω > 100 rad/s. Other effects
like control actuator time delays and fuel sloshing also contribute to model
inaccuracy at even higher frequencies, but the dominant unmodeled effects
are the fuselage bending modes. You can think of these unmodeled bending
modes as multiplicative uncertainty of size 20 dB, and design your controller
using loopsyn, by making sure that the loop has gain less than –20 dB at, and
beyond, the frequency ω > 100 rad/s.

Design Specifications
The singular value design specifications are

• Robustness Spec.: –20 dB/decade roll-off slope and –20 dB loop gain
at 100 rad/s

• Performance Spec.: Minimize the sensitivity function as much as
possible.

Both specs can be accommodated by taking as the desired loop shape

Gd(s)=8/s

MATLAB Commands for a LOOPSYN Design

%% Enter the desired loop shape Gd
s=zpk('s'); % Laplace variable s
Gd=8/s; % desired loop shape
%% Compute the optimal loop shaping controller K
[K,CL,GAM]=loopsyn(G,Gd);
%% Compute the loop L, sensitivity S and
%% complementary sensitivity T:
L=G*K;
I=eye(size(L));
S=feedback(I,L); % S=inv(I+L);
T=I-S;
%% Plot the results:
% step response plots

2-16

Using LOOPSYN to Do H-Infinity Loop Shaping

step(T);title('\alpha and \theta command step responses');
% frequency response plots
figure;
sigma(I+L,'--',T,':',L,'r--',Gd,'k-.',Gd/GAM,'k:',...
Gd*GAM,'k:',{.1,100});grid

legend('1/\sigma(S) performance',...
'\sigma(T) robustness',...
'\sigma(L) loopshape',...
'\sigma(Gd) desired loop',...
'\sigma(Gd) \pm GAM, dB');

The plots of the resulting step and frequency response for the NASA HiMAT
loopsyn loop-shaping controller design are shown in the following figure. The
number ±GAM, dB (i.e., 20log10(GAM)) tells you the accuracy with which
your loopsyn control design matches the target desired loop:

GK

GK
c

c

() ≥ − <

() ≥ + >

, , , ()

, , , ().

db G db GAM db

db G db GAM db
d

d

2-17

2 Multivariable Loop Shaping

HiMAT Closed Loop Step Responses

2-18

Using LOOPSYN to Do H-Infinity Loop Shaping

LOOPSYN Design Results for NASA HiMAT

2-19

2 Multivariable Loop Shaping

Fine-Tuning the LOOPSYN Target Loop Shape Gd to Meet
Design Goals
If your first attempt at loopsyn design does not achieve everything you
wanted, you will need to readjust your target desired loop shape Gd. Here are
some basic design tradeoffs to consider:

• Stability Robustness. Your target loop Gd should have low gain (as small
as possible) at high frequencies where typically your plant model is so poor
that its phase angle is completely inaccurate, with errors approaching
±180° or more.

• Performance. Your Gd loop should have high gain (as great as possible)
at frequencies where your model is good, in order to ensure good control
accuracy and good disturbance attenuation.

• Crossover and Roll-Off. Your desired loop shape Gd should have its 0 dB
crossover frequency (denoted ωc) between the above two frequency ranges,
and below the crossover frequency ωc it should roll off with a negative slope
of between –20 and –40 dB/decade, which helps to keep phase lag to less
than –180° inside the control loop bandwidth (0 < ω < ωc).

Other considerations that might affect your choice of Gd are the
right-half-plane poles and zeros of the plant G, which impose ffundamental
limits on your 0 dB crossover frequency ωc [12]. For instance, your 0 dB
crossover ωc must be greater than the magnitude of any plant right-half-plane
poles and less than the magnitude of any right-half-plane zeros.

max min .
Re Rep

i c
z

i
i i

p z
()> ()>

< <
0 0

If you do not take care to choose a target loop shape Gd that conforms to
these fundamental constraints, then loopsyn will still compute the optimal
loop-shaping controller K for your Gd, but you should expect that the optimal
loop L=G*K will have a poor fit to the target loop shape Gd, and consequently it
might be impossible to meet your performance goals.

2-20

Using MIXSYN for H-Infinity Loop Shaping

Using MIXSYN for H-Infinity Loop Shaping
A popular alternative approach to loopsyn loop shaping isH∞mixed-sensitivity
loop shaping, which is implemented by the Robust Control Toolbox software
command:

K=mixsyn(G,W1,[],W3)

With mixsyn controller synthesis, your performance and stability robustness
specifications equations (2-2) and (2-4) are combined into a single infinity
norm specification of the form

Ty u1 1
1

∞
≤

where (see MIXSYN H∞ Mixed-Sensitivity Loop Shaping Ty1 u1 on page 2-22):

T
W S
W Ty u

def

1 1

1

3
=

⎡

⎣
⎢

⎤

⎦
⎥ .

The term Ty u1 1 ∞
is called a mixed-sensitivity cost function because it

penalizes both sensitivity S(s) and complementary sensitivity T(s). Loop
shaping is achieved when you choose W1 to have the target loop shape for
frequencies ω < ωc, and you choose 1/W3 to be the target for ω > ωc. In choosing
design specifications W1 and W3 for a mixsyn controller design, you need to
ensure that your 0 dB crossover frequency for the Bode plot ofW1 is below the
0 dB crossover frequency of 1/W3, as shown in Singular Value Specifications
on L, S, and T on page 2-11, so that there is a gap for the desired loop shape
Gd to pass between the performance bound W1 and your robustness bound

W3
1− . Otherwise, your performance and robustness requirements will not

be achievable.

2-21

2 Multivariable Loop Shaping

MIXSYN H• Mixed-Sensitivity Loop Shaping Ty1 u1

Example: NASA HiMAT Design Using MIXSYN
To do a mixsyn H∞ mixed-sensitivity synthesis design on the HiMAT model,
start with the plant model G created in “Example: NASA HiMAT Design
Using MIXSYN” on page 2-22 and type the following commands:

% Set up the performance and robustness bounds W1 & W3

s=zpk('s'); % Laplace variable s

MS=2;AS=.03;WS=5;

W1=(s/MS+WS)/(s+AS*WS);

MT=2;AT=.05;WT=20;

W3=(s+WT/MT)/(AT*s+WT);

% Compute the H-infinity mixed-sensitivity optimal sontroller K1

[K1,CL1,GAM1]=mixsyn(G,W1,[],W3);

% Next compute and plot the closed-loop system.

% Compute the loop L1, sensitivity S1, and comp sensitivity T1:

L1=G*K1;

I=eye(size(L1));

S1=feedback(I,L1); % S=inv(I+L1);

T1=I-S1;

% Plot the results:

% step response plots

2-22

Using MIXSYN for H-Infinity Loop Shaping

step(T1,1.5);

title('\alpha and \theta command step responses');

% frequency response plots

figure;

sigma(I+L1,'--',T1,':',L1,'r--',... W1/GAM1,'k--',GAM1/W3,'k-.',{.1,100});grid

legend('1/\sigma(S) performance',...

'\sigma(T) robustness',...

'\sigma(L) loopshape',...

'\sigma(W1) performance bound',...

'\sigma(1/W3) robustness bound');

The resulting mixsyn singular value plots for the NASA HiMAT model are
shown below.

MIXSYN Design Results for NASA HiMAT

2-23

2 Multivariable Loop Shaping

Loop-Shaping Commands
Robust Control Toolbox software gives you several choices for shaping the
frequency response properties of multiinput/multioutput (MIMO) feedback
control loops. Some of the main commands that you are likely to use for
loop-shaping design, and associated utility functions, are listed below:

MIMO Loop-Shaping Commands

loopsyn H∞ loop-shaping controller synthesis

ltrsyn LQG loop-transfer recovery

mixsyn H∞ mixed-sensitivity controller synthesis

ncfsyn Glover-McFarlane H∞ normalized coprime factor loop-
shaping controller synthesis

MIMO Loop-Shaping Utility Functions

augw Augmented plant for weighted H2 and H∞ mixed-
sensitivity control synthesis

makeweight Weights for H∞mixed sensitivity (mixsyn, augw)

sigma Singular value plots of LTI feedback loops

2-24

3

Model Reduction for Robust
Control

• “Introduction” on page 3-2

• “Overview of Model Reduction Techniques” on page 3-5

• “Approximating Plant Models — Additive Error Methods” on page 3-7

• “Approximating Plant Models — Multiplicative Error Method” on page 3-9

• “Using Modal Algorithms” on page 3-11

• “Reducing Large-Scale Models” on page 3-14

• “Using Normalized Coprime Factor Methods” on page 3-15

• “Bibliography” on page 3-16

3 Model Reduction for Robust Control

Introduction
In the design of robust controllers for complicated systems, model reduction
fits several goals:

1 To simplify the best available model in light of the purpose for which the
model is to be used—namely, to design a control system to meet certain
specifications.

2 To speed up the simulation process in the design validation stage, using a
smaller size model with most of the important system dynamics preserved.

3 Finally, if a modern control method such as LQG or H∞ is used for which
the complexity of the control law is not explicitly constrained, the order of
the resultant controller is likely to be considerably greater than is truly
needed. A good model reduction algorithm applied to the control law can
sometimes significantly reduce control law complexity with little change in
control system performance.

Model reduction routines in this toolbox can be put into two categories:

• Additive error method— The reduced-order model has an additive error
bounded by an error criterion.

• Multiplicative error method — The reduced-order model has a
multiplicative or relative error bounded by an error criterion.

The error is measured in terms of peak gain across frequency (H∞ norm), and
the error bounds are a function of the neglected Hankel singular values.

Hankel Singular Values
In control theory, eigenvalues define a system stability, whereas Hankel
singular values define the “energy” of each state in the system. Keeping
larger energy states of a system preserves most of its characteristics in terms
of stability, frequency, and time responses. Model reduction techniques
presented here are all based on the Hankel singular values of a system.
They can achieve a reduced-order model that preserves the majority of the
system characteristics.

3-2

Introduction

Mathematically, given a stable state-space system (A,B,C,D), its Hankel
singular values are defined as [1]

 H i PQ= ()

where P and Q are controllability and observability grammians satisfying

AP PA BB

A Q QA C C

T T

T T

+ = −

+ = − .

For example,

rand('state',1234); randn('state',5678);
G = rss(30,4,3);
hankelsv(G)

returns a Hankel singular value plot as follows:

3-3

3 Model Reduction for Robust Control

which shows that system G has most of its “energy” stored in states 1 through
15 or so. Later, you will see how to use model reduction routines to keep a
15-state reduced model that preserves most of its dynamic response.

3-4

Overview of Model Reduction Techniques

Overview of Model Reduction Techniques
Robust Control Toolbox software offers several algorithms for model
approximation and order reduction. These algorithms let you control the
absolute or relative approximation error, and are all based on the Hankel
singular values of the system.

As discussed in previous sections, robust control theory quantifies a
system uncertainty as either additive or multiplicative types. These model
reduction routines are also categorized into two groups: additive error and
multiplicative error types. In other words, some model reduction routines
produce a reduced-order model Gred of the original model G with a bound on

the error G Gred− ∞ , the peak gain across frequency. Others produce a

reduced-order model with a bound on the relative error G G Gred−
∞

−()1 .

These theoretical bounds are based on the “tails” of the Hankel singular
values of the model, i.e.,

Additive Error Bound

G Gred i
k

n
− ≤∞

+
∑2

1

(3-1)
where σi are denoted the ith Hankel singular value of the original system G.

Multiplicative (Relative) Error Bound

G G Gred i i i
k

n
−

∞ +
−() ≤ + + +()⎛

⎝⎜
⎞
⎠⎟

−∏1 2

1

1 2 1 1
(3-2)

where σi are denoted the ith Hankel singular value of the phase matrix of the
model G (see the bstmr reference page).

3-5

3 Model Reduction for Robust Control

Top-Level Model Reduction Command

Method Description

reduce Main interface to model approximation algorithms

Normalized Coprime Balanced Model Reduction Command

Method Description

ncfmr Normalized coprime balanced truncation

Additive Error Model Reduction Commands

Method Description

balancmr Square-root balanced model truncation

schurmr Schur balanced model truncation

hankelmr Hankel minimum degree approximation

Multiplicative Error Model Reduction Command

Method Description

bstmr Balanced stochastic truncation

Additional Model Reduction Tools

Method Description

modreal Modal realization and truncation

slowfast Slow and fast state decomposition

stabsep Stable and antistable state projection

3-6

Approximating Plant Models — Additive Error Methods

Approximating Plant Models — Additive Error Methods
Given a system in LTI form, the following commands reduce the system to
any desired order you specify. The judgment call is based on its Hankel
singular values as shown in the previous paragraph.

rand('state',1234); randn('state',5678);
G = rss(30,4,3);
% balanced truncation to models with sizes 12:16
[g1,info1] = balancmr(G,12:16); % or use reduce
% Schur balanced truncation by specifying `MaxError'
[g2,info2] = schurmr(G,'MaxError',[1,0.8,0.5,0.2]);
sigma(G,'b-',g1,'r--',g2,'g-.')

shows a comparison plot of the original model G and reduced models g1 and g2.

To determine whether the theoretical error bound is satisfied,

norm(G-g1(:,:,1),'inf') % 2.0123
info1.ErrorBound(1) % 2.8529

3-7

3 Model Reduction for Robust Control

or plot the model error vs. error bound via the following commands:

[sv,w] = sigma(G-g1(:,:,1));
loglog(w,sv,w,info1.ErrorBound(1)*ones(size(w)))
xlabel('rad/sec');ylabel('SV');
title('Error Bound and Model Error')

3-8

Approximating Plant Models — Multiplicative Error Method

Approximating Plant Models — Multiplicative Error
Method

In most cases, multiplicative error model reduction method bstmr tends to
bound the relative error between the original and reduced-order models
across the frequency range of interest, hence producing a more accurate
reduced-order model than the additive error methods. This characteristic is
obvious in system models with low damped poles.

The following commands illustrate the significance of a multiplicative error
model reduction method as compared to any additive error type. Clearly, the
phase-matching algorithm using bstmr provides a better fit in the Bode plot.

rand('state',1234); randn('state',5678); G = rss(30,1,1);
[gr,infor] = reduce(G,'algo','balance','order',7);
[gs,infos] = reduce(G,'algo','bst','order',7);
figure(1);bode(G,'b-',gr,'r--');
title('Additive Error Method')
figure(2);bode(G,'b-',gs,'r--');
title('Relative Error Method')

3-9

3 Model Reduction for Robust Control

Therefore, for some systems with low damped poles/zeros, the balanced
stochastic method (bstmr) produces a better reduced-order model fit in those
frequency ranges to make multiplicative error small. Whereas additive error
methods such as balancmr, schurmr, or hankelmr only care about minimizing
the overall “absolute” peak error, they can produce a reduced-order model
missing those low damped poles/zeros frequency regions.

3-10

Using Modal Algorithms

Using Modal Algorithms

Rigid Body Dynamics
In many cases, a model’s jω-axis poles are important to keep after model
reduction, e.g., rigid body dynamics of a flexible structure plant or integrators
of a controller. A unique routine, modreal, serves the purpose nicely.

modreal puts a system into its modal form, with eigenvalues appearing on
the diagonal of its A-matrix. Real eigenvalues appear in 1-by-1 blocks, and
complex eigenvalues appear in 2-by-2 real blocks. All the blocks are ordered
in ascending order, based on their eigenvalue magnitudes, by default, or
descending order, based on their real parts. Therefore, specifying the number
of jω-axis poles splits the model into two systems with one containing only
jω-axis dynamics, the other containing the non-jω axis dynamics.

rand('state',5678); randn('state',1234); G = rss(30,1,1);
[Gjw,G2] = modreal(G,1); % only one rigid body dynamics
G2.d = Gjw.d; Gjw.d = 0; % put DC gain of G into G2
subplot(211);sigma(Gjw);ylabel('Rigid Body')
subplot(212);sigma(G2);ylabel('Nonrigid Body')

3-11

3 Model Reduction for Robust Control

Further model reduction can be done on G2 without any numerical difficulty.
After G2 is further reduced to Gred, the final approximation of the model is
simply Gjw+Gred.

This process of splitting jω-axis poles has been built in and automated in
all the model reduction routines (balancmr, schurmr, hankelmr, bstmr,
hankelsv) so that users need not worry about splitting the model.

The following single command creates a size 8 reduced-order model from
its original 30-state model:

rand('state',5678); randn('state',1234); G = rss(30,1,1);
[gr,info] = reduce(G); % choose a size of 8 at prompt
bode(G,'b-',gr,'r--')

Without specifying the size of the reduced-order model, a Hankel singular
value plot is shown below.

3-12

Using Modal Algorithms

The default algorithm balancmr of reduce has done a great job of
approximating a 30-state model with just eight states. Again, the rigid body
dynamics are preserved for further controller design.

3-13

3 Model Reduction for Robust Control

Reducing Large-Scale Models
For some really large size problems (states > 200), modreal turns out
to be the only way to start the model reduction process. Because of the
size and numerical properties associated with those large size, and low
damped dynamics, most Hankel based routines can fail to produce a good
reduced-order model.

modreal puts the large size dynamics into the modal form, then truncates the
dynamic model to an intermediate stage model with a comfortable size of 50
or so states. From this point on, those more sophisticated Hankel singular
value based routines can further reduce this intermediate stage model, in a
much more accurate fashion, to a smaller size for final controller design.

For a typical 240-state flexible spacecraft model in the spacecraft industry,
applying modreal and bstmr (or any other additive routines) in sequence can
reduce the original 240-state plant dynamics to a seven-state three-axis model
including rigid body dynamics. Any modern robust control design technique
mentioned in this toolbox can then be easily applied to this smaller size plant
for a controller design.

3-14

Using Normalized Coprime Factor Methods

Using Normalized Coprime Factor Methods
A special model reduction routine ncfmr produces a reduced-order model
by truncating a balanced coprime set of a given model. It can directly
simplify a modern controller with integrators to a smaller size by balanced
truncation of the normalized coprime factors. It does not need modreal for
pre-/postprocessing as the other routines do. However, the integrators will
not be preserved.

rand('state',5678); randn('state',1234);
K= rss(30,4,3); % The same model G used in the 1st example
[Kred,info2] = ncfmr(K);
sigma(K,Kred)

Again, without specifying the size of the reduced-order model, any model
reduction routine presented here will plot a Hankel singular value bar chart
and prompt you for a reduced model size. In this case, enter 15.

If integral control is important, previously mentioned methods (except ncfmr)
can nicely preserve the original integrator(s) in the model.

3-15

3 Model Reduction for Robust Control

Bibliography
[1] Glover, K., “All Optimal Hankel Norm Approximation of Linear
Multivariable Systems, and Their L∝ - Error Bounds,” Int. J. Control, Vol. 39,
No. 6, 1984, pp. 1145-1193.

[2] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control,
Englewood Cliffs, NJ, Prentice Hall, 1996.

[3] Safonov, M.G., and Chiang, R.Y., “A Schur Method for Balanced Model
Reduction,” IEEE Trans. on Automat. Contr., Vol. 34, No. 7, July 1989,
pp. 729-733.

[4] Safonov, M.G., Chiang, R.Y., and Limebeer, D.J.N., “Optimal Hankel
Model Reduction for Nonminimal Systems,” IEEE Trans. on Automat. Contr.,
Vol. 35, No. 4, April 1990, pp. 496-502.

[5] Safonov, M.G., and Chiang, R.Y., “Model Reduction for Robust Control:
A Schur Relative Error Method,” International J. of Adaptive Control and
Signal Processing, Vol. 2, 1988, pp. 259-272.

[6] Obinata, G., and Anderson, B.D.O., Model Reduction for Control System
Design, London, Springer-Verlag, 2001.

3-16

4

Robustness Analysis

• “Uncertainty Modeling” on page 4-2

• “Robustness Analysis” on page 4-9

• “Multiinput, Multioutput Robustness Analysis” on page 4-14

• “Worst-Case Gain Analysis” on page 4-22

• “Summary of Robustness Analysis Tools” on page 4-25

4 Robustness Analysis

Uncertainty Modeling
Dealing with and understanding the effects of uncertainty are important tasks
for the control engineer. Reducing the effects of some forms of uncertainty
(initial conditions, low-frequency disturbances) without catastrophically
increasing the effects of other dominant forms (sensor noise, model
uncertainty) is the primary job of the feedback control system.

Closed-loop stability is the way to deal with the (always present) uncertainty
in initial conditions or arbitrarily small disturbances.

High-gain feedback in low-frequency ranges is a way to deal with the effects
of unknown biases and disturbances acting on the process output. In this
case, you are forced to use roll-off filters in high-frequency ranges to deal with
high-frequency sensor noise in a feedback system.

Finally, notions such as gain and phase margins (and their generalizations)
help quantify the sensitivity of stability and performance in the face of model
uncertainty, which is the imprecise knowledge of how the control input
directly affects the feedback variables.

Robust Control Toolbox software has built-in features allowing you to specify
model uncertainty simply and naturally. The primary building blocks, called
uncertain elements or atoms, are uncertain real parameters and uncertain
linear, time-invariant objects. These can be used to create coarse and simple
or detailed and complex descriptions of the model uncertainty present within
your process models.

Once formulated, high-level system robustness tools can help you analyze the
potential degradation of stability and performance of the closed-loop system
brought on by the system model uncertainty.

Creating Uncertain Models of Dynamic Systems
The two dominant forms of model uncertainty are as follows:

• Uncertainty in parameters of the underlying differential equation models

4-2

Uncertainty Modeling

• Frequency-domain uncertainty, which often quantifies model uncertainty
by describing absolute or relative uncertainty in the process’s frequency
response

Using these two basic building blocks, along with conventional system
creation commands (such as ss and tf), you can easily create uncertain
system models.

Creating Uncertain Parameters
An uncertain parameter has a name (used to identify it within an uncertain
system with many uncertain parameters) and a nominal value. Being
uncertain, it also has variability, described in one of the following ways:

• An additive deviation from the nominal

• A range about the nominal

• A percentage deviation from the nominal

Create a real parameter, with name ’bw’, nominal value 5, and a percentage
uncertainty of 10%.

bw = ureal('bw',5,'Percentage',10)

This creates a ureal object. View its properties using the get command.

Uncertain Real Parameter: Name bw, NominalValue 5, variability = [-10 10]%

get(bw)

Name: 'bw'

NominalValue: 5

Mode: 'Percentage'

Range: [4.5000 5.5000]

PlusMinus: [-0.5000 0.5000]

Percentage: [-10 10]

AutoSimplify: 'basic'

Note that the range of variation (Range property) and the additive deviation
from nominal (the PlusMinus property) are consistent with the Percentage
property value.

4-3

4 Robustness Analysis

You can create state-space and transfer function models with uncertain
real coefficients using ureal objects. The result is an uncertain state-space
object, or uss. As an example, use the uncertain real parameter bw to model a
first-order system whose bandwidth is between 4.5 and 5.5 rad/s.

H = tf(1,[1/bw 1])
USS: 1 State, 1 Output, 1 Input, Continuous System

bw: real, nominal = 5, variability = [-10 10]%, 1 occurrence

Note that the result H is an uncertain system, called a uss object. The nominal
value of H is a state-space object. Verify that the pole is at –5.

pole(H.NominalValue)
ans =

-5

Next, use bode and step to examine the behavior of H.

bode(H,{1e-1 1e2});

4-4

Uncertainty Modeling

step(H)

4-5

4 Robustness Analysis

While there are variations in the bandwidth and time constant of H, the
high-frequency rolls off at 20 dB/decade regardless of the value of bw. You can
capture the more complicated uncertain behavior that typically occurs at high
frequencies using the ultidyn uncertain element, which is described next.

Quantifying Unmodeled Dynamics
An informal way to describe the difference between the model of a process and
the actual process behavior is in terms of bandwidth. It is common to hear
“The model is good out to 8 radians/second.” The precise meaning is not clear,
but it is reasonable to believe that for frequencies lower than, say, 5 rad/s,
the model is accurate, and for frequencies beyond, say, 30 rad/s, the model is
not necessarily representative of the process behavior. In the frequency range
between 5 and 30, the guaranteed accuracy of the model degrades.

The uncertain linear, time-invariant dynamics object ultidyn can be used
to model this type of knowledge. An ultidyn object represents an unknown
linear system whose only known attribute is a uniform magnitude bound
on its frequency response. When coupled with a nominal model and a

4-6

Uncertainty Modeling

frequency-shaping filter, ultidyn objects can be used to capture uncertainty
associated with the model dynamics.

Suppose that the behavior of the system modeled by H significantly deviates
from its first-order behavior beyond 9 rad/s, for example, about 5% potential
relative error at low frequency, increasing to 1000% at high frequency where
H rolls off. In order to model frequency domain uncertainty as described above
using ultidyn objects, follow these steps:

1 Create the nominal system Gnom, using tf, ss, or zpk. Gnom itself might
already have parameter uncertainty. In this case Gnom is H, the first-order
system with an uncertain time constant.

2 Create a filter W, called the “weight,” whose magnitude represents the
relative uncertainty at each frequency. The utility makeweight is useful for
creating first-order weights with specific low- and high-frequency gains,
and specified gain crossover frequency.

3 Create an ultidyn object Delta with magnitude bound equal to 1.

The uncertain model G is formed by G = Gnom*(1+W*Delta).

If the magnitude of W represents an absolute (rather than relative)
uncertainty, use the formula G = Gnom + W*Delta instead.

The following commands carry out these steps:

Gnom = H;
W = makeweight(.05,9,10);
Delta = ultidyn('Delta',[1 1]);
G = Gnom*(1+W*Delta)
USS: 2 States, 1 Output, 1 Input, Continuous System

Delta: 1x1 LTI, max. gain = 1, 1 occurrence
bw: real, nominal = 5, variability = [-10 10]%, 1 occurrence

Note that the result G is also an uncertain system, with dependence on both
Delta and bw. You can use bode to make a Bode plot of 20 random samples of
G's behavior over the frequency range [0.1 100] rad/s.

bode(G,{1e-1 1e2},25)

4-7

4 Robustness Analysis

In the next section, you design and compare two feedback controllers for G.

4-8

Robustness Analysis

Robustness Analysis
Next, design a feedback controller for G. The goals of this design are the
usual ones: good steady-state tracking and disturbance rejection properties.
Because the plant model is nominally a first-order lag, choose a PI control
architecture. Given the desired closed-loop damping ratio ξ and natural
frequency ωn, the design equations for KI and KP (based on the nominal
open-loop time constant of 0.2) are

K KI
n

P
n= = −

 2

5
2

5
1, .

Follow these steps to design the controller:

1 In order to study how the uncertain behavior of G affects the achievable
closed-loop bandwidth, design two controllers, both achieving ξ=0.707, with
different ωn: 3 and 7.5 respectively.

xi = 0.707;
wn = 3;
K1 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);
wn = 7.5;
K2 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);

Note that the nominal closed-loop bandwidth achieved by K2 is in a region
where G has significant model uncertainty. It will not be surprising if
the model variations lead to significant degradations in the closed-loop
performance.

2 Form the closed-loop systems using feedback.

T1 = feedback(G*K1,1);
T2 = feedback(G*K2,1);

3 Plot the step responses of 20 samples of each closed-loop system.

tfinal = 3;
step(T1,'b',T2,'r',tfinal,20)

4-9

4 Robustness Analysis

The step responses for T2 exhibit a faster rise time because K2 sets a higher
closed loop bandwidth. However, the model variations have a greater effect.

You can use robuststab to check the robustness of stability to the model
variations.

[stabmarg1,destabu1,report1] = robuststab(T1);
stabmarg1
stabmarg1 =

ubound: 4.0241
lbound: 4.0241

destabfreq: 3.4959
[stabmarg2,destabu2,report2] = robuststab(T2);
stabmarg2
stabmarg2 =

ubound: 1.2545
lbound: 1.2544

destabfreq: 10.5249

4-10

Robustness Analysis

The stabmarg variable gives lower and upper bounds on the stability margin.
A stability margin greater than 1 means the system is stable for all values
of the modeled uncertainty. A stability margin less than 1 means there are
allowable values of the uncertain elements that make the system unstable.
The report variable briefly summarizes the analysis.

report1

report1 =

Uncertain System is robustly stable to modeled uncertainty.

-- It can tolerate up to 402% of modeled uncertainty.

-- A destabilizing combination of 402% the modeled uncertainty exists, causing an instability at

3.5 rad/s.

report2

report2 =

Uncertain System is robustly stable to modeled uncertainty.

-- It can tolerate up to 125% of modeled uncertainty.

-- A destabilizing combination of 125% the modeled uncertainty exists, causing an instability at

10.5 rad/s.

While both systems are stable for all variations, their performance is clearly
affected to different degrees. To determine how the uncertainty affects
closed-loop performance, you can use wcgain to compute the worst-case
effect of the uncertainty on the peak magnitude of the closed-loop sensitivity
(S=1/(1+GK)) function. This peak gain is typically correlated with the amount
of overshoot in a step response.

To do this, form the closed-loop sensitivity functions and call wcgain.

S1 = feedback(1,G*K1);
S2 = feedback(1,G*K2);
[maxgain1,wcu1] = wcgain(S1);
maxgain1
maxgain1 =

lbound: 1.8684
ubound: 1.9025

critfreq: 3.5152
[maxgain2,wcu2] = wcgain(S2);
maxgain2
maxgain2 =

lbound: 4.6031

4-11

4 Robustness Analysis

ubound: 4.6671
critfreq: 11.0231

The maxgain variable gives lower and upper bounds on the worst-case peak
gain of the sensitivity transfer function, as well as the specific frequency
where the maximum gain occurs. The wcu variable contains specific values of
the uncertain elements that achieve this worst-case behavior.

You can use usubs to substitute these worst-case values for uncertain
elements, and compare the nominal and worst-case behavior. Use bodemag
and step to make the comparison.

bodemag(S1.NominalValue,'b',usubs(S1,wcu1),'b');
hold on
bodemag(S2.NominalValue,'r',usubs(S2,wcu2),'r');
hold off

Clearly, while K2 achieves better nominal sensitivity than K1, the nominal
closed-loop bandwidth extends too far into the frequency range where the

4-12

Robustness Analysis

process uncertainty is very large. Hence the worst-case performance of K2 is
inferior to K1 for this particular uncertain model.

The next section explores these robustness analysis tools further on a
multiinput, multioutput system.

4-13

4 Robustness Analysis

Multiinput, Multioutput Robustness Analysis
The previous sections focused on simple uncertainty models of single-input
and single-output systems, predominantly from a transfer function
perspective. You can also create uncertain state-space models made up of
uncertain state-space matrices. Moreover, all the analysis tools covered thus
far can be applied to these systems as well.

Consider, for example, a two-input, two-output, two-state system whose
model has parametric uncertainty in the state-space matrices. First create
an uncertain parameter p. Using the parameter, make uncertain A and C
matrices. The B matrix happens to be not-uncertain, although you will add
frequency domain input uncertainty to the model in “Adding Independent
Input Uncertainty to Each Channel” on page 4-15.

p = ureal('p',10,'Percentage',10);
A = [0 p;-p 0];
B = eye(2);
C = [1 p;-p 1];
H = ss(A,B,C,[0 0;0 0]);

You can view the properties of the uncertain system H using the get command.

get(H)
a: [2x2 umat]
b: [2x2 double]
c: [2x2 umat]
d: [2x2 double]

StateName: {2x1 cell}
Ts: 0

InputName: {2x1 cell}
OutputName: {2x1 cell}
InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]
NominalValue: [2x2 ss]
Uncertainty: [1x1 atomlist]

Notes: {}
UserData: []

4-14

Multiinput, Multioutput Robustness Analysis

The properties a, b, c, d, and StateName behave in exactly the same manner
as ss objects. The properties InputName, OutputName, InputGroup, and
OutputGroup behave in exactly the same manner as all the system objects
(ss, zpk, tf, and frd). The NominalValue is an ss object.

Adding Independent Input Uncertainty
to Each Channel
The model for H does not include actuator dynamics. Said differently, the
actuator models are unity-gain for all frequencies.

Nevertheless, the behavior of the actuator for channel 1 is modestly uncertain
(say 10%) at low frequencies, and the high-frequency behavior beyond 20
rad/s is not accurately modeled. Similar statements hold for the actuator in
channel 2, with larger modest uncertainty at low frequency (say 20%) but
accuracy out to 45 rad/s.

Use ultidyn objects Delta1 and Delta2 along with shaping filters W1 and W2
to add this form of frequency domain uncertainty to the model.

W1 = makeweight(.1,20,50);
W2 = makeweight(.2,45,50);
Delta1 = ultidyn('Delta1',[1 1]);
Delta2 = ultidyn('Delta2',[1 1]);
G = H*blkdiag(1+W1*Delta1,1+W2*Delta2)
USS: 4 States, 2 Outputs, 2 Inputs, Continuous System

Delta1: 1x1 LTI, max. gain = 1, 1 occurrence
Delta2: 1x1 LTI, max. gain = 1, 1 occurrence

p: real, nominal = 10, variability = [-10 10]%, 2 occurrences

Note that G is a two-input, two-output uncertain system, with dependence on
three uncertain elements, Delta1, Delta2, and p. It has four states, two from
H and one each from the shaping filters W1 and W2, which are embedded in G.

You can plot a 2-second step response of several samples of G. The 10%
uncertainty in the natural frequency is obvious.

step(G,2)

4-15

4 Robustness Analysis

You can create a Bode plot of 50 samples of G. The high-frequency uncertainty
in the model is also obvious. For clarity, start the Bode plot beyond the
resonance.

bode(G,{13 100},50)

4-16

Multiinput, Multioutput Robustness Analysis

Closed-Loop Robustness Analysis
You need to load the controller and verify that it is two-input and two-output.

load mimoKexample
size(K)
State-space model with 2 outputs, 2 inputs, and 9 states.

You can use the command loopsens to form all the standard plant/controller
feedback configurations, including sensitivity and complementary sensitivity
at both the input and output. Because G is uncertain, all the closed-loop
systems are uncertain as well.

F = loopsens(G,K)

4-17

4 Robustness Analysis

F =
Poles: [13x1 double]

Stable: 1
Si: [2x2 uss]
Ti: [2x2 uss]
Li: [2x2 uss]
So: [2x2 uss]
To: [2x2 uss]
Lo: [2x2 uss]

PSi: [2x2 uss]
CSo: [2x2 uss]

F is a structure with many fields. The poles of the nominal closed-loop system
are in F.Poles, and F.Stable is 1 if the nominal closed-loop system is stable.
In the remaining 10 fields, S stands for sensitivity, T for complementary
sensitivity, and L for open-loop gain. The suffixes i and o refer to the input and
output of the plant (G). Finally, P and C refer to the “plant” and “controller.”

Hence Ti is mathematically the same as

K(I + GK)–1G

while Lo is G*K, and CSo is mathematically the same as

K(I + GK)–1

You can examine the transmission of disturbances at the plant input to the
plant output using bodemag on F.PSi. Graph 50 samples along with the
nominal.

bodemag(F.PSi,':/-',{1e-1 100},50)

4-18

Multiinput, Multioutput Robustness Analysis

Nominal Stability Margins
You can use loopmargin to investigate loop-at-a-time gain and phase margins,
loop-at-a-time disk margins, and simultaneous multivariable margins. They
are computed for the nominal system and do not reflect the uncertainty
models within G.

Explore the simultaneous margins individually at the plant input,
individually at the plant output, and simultaneously at both input and output.

[I,DI,SimI,O,DO,SimO,Sim] = loopmargin(G,K);

The third output argument is the simultaneous gain and phase variations
allowed in all input channels to the plant.

4-19

4 Robustness Analysis

SimI
SimI =

GainMargin: [0.1180 8.4769]
PhaseMargin: [-76.5441 76.5441]

Frequency: 6.2287

This information implies that the gain at the plant input can vary in both
channels independently by factors between (approximately) 1/8 and 8, as well
as phase variations up to 76 degrees.

The sixth output argument is the simultaneous gain and phase variations
allowed in all output channels to the plant.

SimO
SimO =

GainMargin: [0.1193 8.3836]
PhaseMargin: [-76.3957 76.3957]

Frequency: 18.3522

Note that the simultaneous margins at the plant output are similar to those
at the input. This is not always the case in multiloop feedback systems.

The last output argument is the simultaneous gain and phase variations
allowed in all input and output channels to the plant. As expected, when
you consider all such variations simultaneously, the margins are somewhat
smaller than those at the input or output alone.

Sim
Sim =

GainMargin: [0.5671 1.7635]
PhaseMargin: [-30.8882 30.8882]

Frequency: 18.3522

Nevertheless, these numbers indicate a generally robust closed-loop system,
able to tolerate significant gain (more than +/-50% in each channel) and 30
degree phase variations simultaneously in all input and output channels
of the plant.

4-20

Multiinput, Multioutput Robustness Analysis

Robustness of Stability Model Uncertainty
With loopmargin, you determined various margins of the nominal, multiloop
system. These margins are computed only for the nominal system, and do
not reflect the uncertainty explicitly modeled by the ureal and ultidyn
objects. When you work with detailed, complex uncertain system models,
the conventional margins computed by loopmargin might not always be
indicative of the actual stability margins associated with the uncertain
elements. You can use robuststab to check the stability margin of the system
to these specific modeled variations.

In this example, use robuststab to compute the stability margin of the
closed-loop system represented by Delta1, Delta2, and p.

Use any of the closed-loop systems within F = loopsens(G,K). All of them,
F.Si, F.To, etc., have the same internal dynamics, and hence the stability
properties are the same.

[stabmarg,desgtabu,report] = robuststab(F.So);

stabmarg

stabmarg =

ubound: 2.2175

lbound: 2.2175

destabfreq: 13.7576

report

report =

Uncertain System is robustly stable to modeled uncertainty.

-- It can tolerate up to 222% of modeled uncertainty.

-- A destabilizing combination of 222% the modeled uncertainty exists,causing an instability at

13.8 rad/s.

This analysis confirms what the loopmargin analysis suggested. The
closed-loop system is quite robust, in terms of stability, to the variations
modeled by the uncertain parameters Delta1, Delta2, and p. In fact, the
system can tolerate more than twice the modeled uncertainty without losing
closed-loop stability.

The next section studies the effects of these variations on the closed-loop
output sensitivity function.

4-21

4 Robustness Analysis

Worst-Case Gain Analysis
You can plot the Bode magnitude of the nominal output sensitivity function.
It clearly shows decent disturbance rejection in all channels at low frequency.

bodemag(F.So.NominalValue,{1e-1 100})

You can compute the peak value of the maximum singular value of the
frequency response matrix using norm.

[PeakNom,freq] = norm(F.So.NominalValue,'inf')
PeakNom =

1.1317
freq =

4-22

Worst-Case Gain Analysis

7.0483

The peak is about 1.13, occurring at a frequency of 36 rad/s.

What is the maximum output sensitivity gain that is achieved when the
uncertain elements Delta1, Delta2, and p vary over their ranges? You can
use wcgain to answer this.

[maxgain,wcu] = wcgain(F.So);
maxgain
maxgain =

lbound: 2.1017
ubound: 2.1835

critfreq: 8.5546

The analysis indicates that the worst-case gain is somewhere between 2.1 and
2.2. The frequency where the peak is achieved is about 8.5.

You can replace the values for Delta1, Delta2, and p that achieve the gain
of 2.1, using usubs. Make the substitution in the output complementary
sensitivity, and do a step response.

step(F.To.NominalValue,usubs(F.To,wcu),5)

4-23

4 Robustness Analysis

The perturbed response, which is the worst combination of uncertain values
in terms of output sensitivity amplification, does not show significant
degradation of the command response. The settling time is increased by about
50%, from 2 to 4, and the off-diagonal coupling is increased by about a factor
of about 2, but is still quite small.

4-24

Summary of Robustness Analysis Tools

Summary of Robustness Analysis Tools

Function Description

ureal Create uncertain real parameter.

ultidyn Create uncertain, linear, time-invariant dynamics.

uss Create uncertain state-space object from uncertain
state-space matrices.

ufrd Create uncertain frequency response object.

loopsens Compute all relevant open and closed-loop
quantities for a MIMO feedback connection.

loopmargin Compute loop-at-a-time as well as MIMO gain and
phase margins for a multiloop system, including
the simultaneous gain/phase margins.

robustperf Robustness performance of uncertain systems.

robuststab Compute the robust stability margin of a nominally
stable uncertain system.

wcgain Compute the worst-case gain of a nominally stable
uncertain system.

wcmargin Compute worst-case (over uncertainty)
loop-at-a-time disk-based gain and phase margins.

wcsens Compute worst-case (over uncertainty) sensitivity
of plant-controller feedback loop.

4-25

4 Robustness Analysis

4-26

5

H-Infinity and Mu
Synthesis

• “Interpretation of H-Infinity Norm” on page 5-2

• “H-Infinity Performance” on page 5-9

• “Functions for Control Design” on page 5-17

• “Application of H-Infinity and Mu to Active Suspension Control” on page
5-19

• “H-Infinity Tuning of Fixed Control Structures” on page 5-36

• “Bibliography” on page 5-50

5 H-Infinity and Mu Synthesis

Interpretation of H-Infinity Norm

Norms of Signals and Systems
There are several ways of defining norms of a scalar signal e(t) in the
time domain. We will often use the 2-norm, (L2-norm), for mathematical
convenience, which is defined as

e e t dt2
2

1
2: .= ()⎛

⎝⎜
⎞
⎠⎟−∞

∞
∫

If this integral is finite, then the signal e is square integrable, denoted as e
L2. For vector-valued signals

e t

e t
e t

e tn

() =

()
()

()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2

�
,

the 2-norm is defined as

e e t dt

e t e t dtT

2 2
2

1
2

1
2

:

.

= ()⎛
⎝⎜

⎞
⎠⎟

= () ()⎛
⎝⎜

⎞
⎠⎟

−∞

∞

−∞

∞

∫

∫

In µ-tools the dynamic systems we deal with are exclusively linear, with
state-space model

�x
e

A B
C D

x
d

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ ,

or, in the transfer function form,

5-2

Interpretation of H-Infinity Norm

e(s) = T(s)d(s), T(s):= C(sI – A)–1B + D

Two mathematically convenient measures of the transfer matrix T(s) in the
frequency domain are the matrix H2 and H∞ norms,

T T j d

T T j

F

R

2
2

1
21

2
:

: max ,

= ()⎡
⎣⎢

⎤
⎦⎥

= ()⎡⎣ ⎤⎦

−∞

∞

∞ ∈

∫

where the Frobenius norm (see the MATLAB norm command) of a complex
matrix M is

M M MF : .*= ()Trace

Both of these transfer function norms have input/output time-domain
interpretations. If, starting from initial condition x(0) = 0, two signals d and
e are related by

�x
e

A B
C D

x
d

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ ,

then

• For d, a unit intensity, white noise process, the steady-state variance of e
is T 2.

• The L2 (or RMS) gain from d → e,

max
d

e

d≠0

2

2

is equal to T ∞. This is discussed in greater detail in the next section.

Using Weighted Norms to Characterize Performance
Any performance criterion must also account for

5-3

5 H-Infinity and Mu Synthesis

• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So, if the performance objective is in the form of a matrix norm, it should
actually be a weighted norm

WLTWR

where the weighting function matrices WL and WR are frequency dependent,
to account for bandwidth constraints and spectral content of exogenous
signals. The most natural (mathematical) manner to characterize acceptable
performance is in terms of the MIMO · ∞ (H∞) norm. For this reason, this
section now discusses some interpretations of the H∞ norm.

Unweighted MIMO System

Suppose T is a MIMO stable linear system, with transfer function matrix T(s).

For a given driving signal �d t() , define �e as the output, as shown below.

Note that it is more traditional to write the diagram in Unweighted MIMO
System: Vectors from Left to Right on page 5-4 with the arrows going from
left to right as in Weighted MIMO System on page 5-6.

Unweighted MIMO System: Vectors from Left to Right

The two diagrams shown above represent the exact same system. We prefer to
write these block diagrams with the arrows going right to left to be consistent
with matrix and operator composition.

Assume that the dimensions of T are ne × nd. Let β > 0 be defined as

5-4

Interpretation of H-Infinity Norm

: : max .= = ()⎡⎣ ⎤⎦∞
∈

T T j
R

Now consider a response, starting from initial condition equal to 0. In that
case, Parseval’s theorem gives that

�
�

� �

� �

e

d

e t e t dt

d t d t dt

T

T

2

2

0

1
2

0

1
2

=
() ()⎡

⎣⎢
⎤
⎦⎥

() ()⎡
⎣⎢

⎤
⎦⎥

≤

∞

∞

∫

∫
 .

Moreover, there are specific disturbances d that result in the ratio � �e d2 2arbitrarily close to β. Because of this, T ∞ is referred to as the L2 (or RMS)
gain of the system.

As you would expect, a sinusoidal, steady-state interpretation of T ∞ is also

possible: For any frequency ∈ R , any vector of amplitudes a Rnd
∈ , and

any vector of phases ∈ Rnd , with a 2 ≤ 1, define a time signal

� �d t
a t

a tn nd d

() =
+()

+()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1sin

sin

.

Applying this input to the system T results in a steady-state response �ess of
the form

� �e t
b t

b t

ss

n ne e

() =
+()

+()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1sin

sin

.

5-5

5 H-Infinity and Mu Synthesis

The vector b Rne∈ will satisfy b 2 ≤ β. Moreover, β, as defined in Weighted
MIMO System on page 5-6, is the smallest number such that this is true
for every a 2 ≤ 1, , and ϕ.

Note that in this interpretation, the vectors of the sinusoidal magnitude
responses are unweighted, and measured in Euclidean norm. If realistic
multivariable performance objectives are to be represented by a single
MIMO · ∞ objective on a closed-loop transfer function, additional scalings
are necessary. Because many different objectives are being lumped into one
matrix and the associated cost is the norm of the matrix, it is important to
use frequency-dependent weighting functions, so that different requirements
can be meaningfully combined into a single cost function. Diagonal weights
are most easily interpreted.

Consider the diagram of Weighted MIMO System on page 5-6, along with
Unweighted MIMO System: Vectors from Left to Right on page 5-4.

Assume that WL and WR are diagonal, stable transfer function matrices, with
diagonal entries denoted Li and Ri.

W

L
L

L

W

R
R

L

n

R

e

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1

2

1

2

0 0
0 0

0 0

0 0
0 0

0 0

…
…

� � � �
…

…
…

� � � �
…

,

RRnd

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

Weighted MIMO System

Bounds on the quantity WLTWR ∞ will imply bounds about the sinusoidal

steady-state behavior of the signals �d and � �e Td=() in the diagram of
Unweighted MIMO System: Vectors from Left to Right on page 5-4.

Specifically, for sinusoidal signal �d , the steady-state relationship between

5-6

Interpretation of H-Infinity Norm

� �e Td=() , �d and WLTWR ∞ is as follows. The steady-state solution �ess ,
denoted as

�
�

�

�

e t
e t

e t

ss

n ne d

() =
+()

+()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1sin

sin

 (5-1)

satisfies

W j eL i
i

n

i

e

() ≤
=
∑ �

2

1
1

for all sinusoidal input signals �d of the form

�
�

�
�

d t
d t

d tn ne d

() =
+()

+()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1sin

sin

 (5-2)

satisfying

�d

W j

i

Ri

n

i

d
2

2
1

1
()

≤
=
∑

if and only if WLTWR ∞ ≤ 1.

This approximately (very approximately — the next statement is not actually
correct) implies that WLTWR ∞ ≤ 1 if and only if for every fixed frequency ,

and all sinusoidal disturbances �d of the form Equation 5-2 satisfying

�d W ji Ri
≤ ()

5-7

5 H-Infinity and Mu Synthesis

the steady-state error components will satisfy

�e
W j

i
Li

≤
()
1

.

This shows how one could pick performance weights to reflect the desired
frequency-dependent performance objective. Use WR to represent the relative
magnitude of sinusoids disturbances that might be present, and use 1/WL to
represent the desired upper bound on the subsequent errors that are produced.

Remember, however, that the weighted H∞ norm does not actually

give element-by-element bounds on the components of �e based on

element-by-element bounds on the components of �d . The precise bound it

gives is in terms of Euclidean norms of the components of �e and �d (weighted
appropriately by WL(j) and WR(j)).

5-8

H-Infinity Performance

H-Infinity Performance

Performance as Generalized Disturbance Rejection
The modern approach to characterizing closed-loop performance objectives
is to measure the size of certain closed-loop transfer function matrices using
various matrix norms. Matrix norms provide a measure of how large output
signals can get for certain classes of input signals. Optimizing these types
of performance objectives over the set of stabilizing controllers is the main
thrust of recent optimal control theory, such as L1, H2, H∞, and optimal
control. Hence, it is important to understand how many types of control
objectives can be posed as a minimization of closed-loop transfer functions.

Consider a tracking problem, with disturbance rejection, measurement noise,
and control input signal limitations, as shown in Generalized and Weighted
Performance Block Diagram on page 5-11. K is some controller to be designed
and G is the system you want to control.

Typical Closed-Loop Performance Objective

A reasonable, though not precise, design objective would be to design K
to keep tracking errors and control input signal small for all reasonable
reference commands, sensor noises, and external force disturbances.

Hence, a natural performance objective is the closed-loop gain from
exogenous influences (reference commands, sensor noise, and external force
disturbances) to regulated variables (tracking errors and control input signal).
Specifically, let T denote the closed-loop mapping from the outside influences
to the regulated variables:

5-9

5 H-Infinity and Mu Synthesis

You can assess performance by measuring the gain from outside influences
to regulated variables. In other words, good performance is associated with
T being small. Because the closed-loop system is a multiinput, multioutput
(MIMO) dynamic system, there are two different aspects to the gain of T:

• Spatial (vector disturbances and vector errors)

• Temporal (dynamic relationship between input/output signals)

Hence the performance criterion must account for

• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So if the performance objective is in the form of a matrix norm, it should
actually be a weighted norm

WLTWR

where the weighting function matricesWL andWR are frequency dependent, to
account for bandwidth constraints and spectral content of exogenous signals.
A natural (mathematical) manner to characterize acceptable performance
is in terms of the MIMO · ∞ (H∞) norm. See “Interpretation of H-Infinity
Norm” on page 5-2 for an interpretation of the H∞ norm and signals.

Interconnection with Typical MIMO Performance Objectives
The closed-loop performance objectives are formulated as weighted closed-loop
transfer functions that are to be made small through feedback. A generic
example, which includes many relevant terms, is shown in block diagram
form in Generalized and Weighted Performance Block Diagram on page 5-11.
In the diagram, G denotes the plant model and K is the feedback controller.

5-10

H-Infinity Performance

Generalized and Weighted Performance Block Diagram

The blocks in this figure might be scalar (SISO) and/or multivariable (MIMO),
depending on the specific example. The mathematical objective of H∞ control
is to make the closed-loop MIMO transfer function Ted satisfy Ted ∞ < 1. The
weighting functions are used to scale the input/output transfer functions such

that when Ted ∞ < 1, the relationship between
�d and �e is suitable.

Performance requirements on the closed-loop system are transformed into
the H∞ framework with the help of weighting or scaling functions. Weights
are selected to account for the relative magnitude of signals, their frequency
dependence, and their relative importance. This is captured in the figure
above, where the weights or scalings [Wcmd, Wdist,Wsnois] are used to transform
and scale the normalized input signals [d1,d2,d3] into physical units defined
as [d1, d2, d3]. Similarly weights or scalings [Wact, Wperf1,Wperf2] transform
and scale physical units into normalized output signals [e1, e2, e3]. An
interpretation of the signals, weighting functions, and models follows.

5-11

5 H-Infinity and Mu Synthesis

Signal Meaning

d1

�d1

Normalized reference command

Typical reference command in physical units

d2

�d2

Normalized exogenous disturbances

Typical exogenous disturbances in physical units

d3

�d3

Normalized sensor noise

Typical sensor noise in physical units

e1

�e1

Weighted control signals

Actual control signals in physical units

e2

�e2

Weighted tracking errors

Actual tracking errors in physical units

e3

�e3

Weighted plant errors

Actual plant errors in physical units

Wcmd

Wcmd is included in H∞ control problems that require tracking of a reference
command. Wcmd shapes the normalized reference command signals
(magnitude and frequency) into the actual (or typical) reference signals that
you expect to occur. It describes the magnitude and the frequency dependence
of the reference commands generated by the normalized reference signal.
Normally Wcmd is flat at low frequency and rolls off at high frequency. For
example, in a flight control problem, fighter pilots generate stick input
reference commands up to a bandwidth of about 2 Hz. Suppose that the stick
has a maximum travel of three inches. Pilot commands could be modeled as
normalized signals passed through a first-order filter:

W
s

act =

⋅
+

3
1

2 2
1

.

5-12

H-Infinity Performance

Wmodel

Wmodel represents a desired ideal model for the closed-looped system and is
often included in problem formulations with tracking requirements. Inclusion
of an ideal model for tracking is often called a model matching problem, i.e.,
the objective of the closed-loop system is to match the defined model. For
good command tracking response, you might want the closed-loop system to
respond like a well-damped second-order system. The ideal model would
then be

W
s

model =
+ +

2

2 22

for specific desired natural frequency ω and desired damping ratio ζ. Unit
conversions might be necessary to ensure exact correlation between the ideal
model and the closed-loop system. In the fighter pilot example, suppose that
roll-rate is being commanded and 10º/second response is desired for each inch
of stick motion. Then, in these units, the appropriate model is:

W
s

model =
+ +

10
2

2

2 2

.

Wdist

Wdist shapes the frequency content and magnitude of the exogenous
disturbances affecting the plant. For example, consider an electron microscope
as the plant. The dominant performance objective is to mechanically isolate
the microscope from outside mechanical disturbances, such as ground
excitations, sound (pressure) waves, and air currents. You can capture the
spectrum and relative magnitudes of these disturbances with the transfer
function weighting matrix Wdist.

Wperf1

Wperf1 weights the difference between the response of the closed-loop system
and the ideal model Wmodel. Often you might want accurate matching of the
ideal model at low frequency and require less accurate matching at higher
frequency, in which case Wperf1 is flat at low frequency, rolls off at first or

5-13

5 H-Infinity and Mu Synthesis

second order, and flattens out at a small, nonzero value at high frequency.
The inverse of the weight is related to the allowable size of tracking errors,
when dealing with the reference commands and disturbances described by
Wref and Wdist.

Wperf2

Wperf2 penalizes variables internal to the process G, such as actuator states
that are internal to G or other variables that are not part of the tracking
objective.

Wact

Wact is used to shape the penalty on control signal use. Wact is a frequency
varying weighting function used to penalize limits on the deflection/position,
deflection rate/velocity, etc., response of the control signals, when dealing
with the tracking and disturbance rejection objectives defined above. Each
control signal is usually penalized independently.

Wsnois

Wsnois represents frequency domain models of sensor noise. Each sensor
measurement feedback to the controller has some noise, which is often
higher in one frequency range than another. The Wsnois weight tries to
capture this information, derived from laboratory experiments or based on
manufacturer measurements, in the control problem. For example, medium
grade accelerometers have substantial noise at low frequency and high
frequency. Therefore the corresponding Wsnois weight would be larger at low
and high frequency and have a smaller magnitude in the mid-frequency
range. Displacement or rotation measurement is often quite accurate at low
frequency and in steady state, but responds poorly as frequency increases.
The weighting function for this sensor would be small at low frequency,
gradually increase in magnitude as a first- or second-order system, and level
out at high frequency.

Hsens

Hsens represents a model of the sensor dynamics or an external antialiasing
filter. The transfer functions used to describe Hsens are based on physical

5-14

H-Infinity Performance

characteristics of the individual components. These models might also be
lumped into the plant model G.

This generic block diagram has tremendous flexibility and many control
performance objectives can be formulated in the H∞ framework using this
block diagram description.

Robustness in the H-Infinity Framework
Performance and robustness tradeoffs in control design were discussed in the
context of multivariable loop shaping in “Tradeoff Between Performance and
Robustness” on page 2-2. In the H∞ control design framework, you can include
robustness objectives as additional disturbance to error transfer functions —
disturbances to be kept small. Consider the following figure of a closed-loop
feedback system with additive and multiplicative uncertainty models.

The transfer function matrices are defined as:

TF s T s KG I GK

TF s KS s K I GK

z w I

z w O

() = () = +()

() = () = +()
→

−

→
−

1 1

2 2

1

1

where TI(s) denotes the input complementary sensitivity function and SO(s)
denotes the output sensitivity function. Theorems 1 and 2 in Chapter
2, “Multivariable Loop Shaping” give bounds on the size of the transfer
function matrices from z1 to w1 and z2 to w2 to ensure that the closed-loop
system is robust to multiplicative uncertainty, ΔM(s), at the plant input, and
additive uncertainty, ΔA(s), around the plant G(s). In the H∞ control problem
formulation, the robustness objectives enter the synthesis procedure as

5-15

5 H-Infinity and Mu Synthesis

additional input/output signals to be kept small. The interconnection with the
uncertainty blocks removed follows.

The H∞ control robustness objective is now in the same format as the
performance objectives, that is, to minimize the H∞ norm of the transfer
matrix from z, [z1,z2], to w, [w1,w2].

Weighting or scaling matrices are often introduced to shape the frequency and
magnitude content of the sensitivity and complementary sensitivity transfer
function matrices. Let WM correspond to the multiplicative uncertainty and
WA correspond to the additive uncertainty model. ΔM(s) and ΔA(s) are assumed
to be a norm bounded by 1, i.e., |ΔM(s)|<1 and |ΔA(s)|<1. Hence as a function
of frequency, |WM(jω)| and |WA(jω)| are the respective sizes of the largest
anticipated additive and multiplicative plant perturbations.

The multiplicative weighting or scaling WM represents a percentage error in
the model and is often small in magnitude at low frequency, between 0.05 and
0.20 (5% to 20% modeling error), and growing larger in magnitude at high
frequency, 2 to 5 ((200% to 500% modeling error). The weight will transition
by crossing a magnitude value of 1, which corresponds to 100% uncertainty
in the model, at a frequency at least twice the bandwidth of the closed-loop
system. A typical multiplicative weight is

W
s

s
M =

+

+
0 10

1
5

1

1
200

1
. .

By contrast, the additive weight or scaling WA represents an absolute error
that is often small at low frequency and large in magnitude at high frequency.
The magnitude of this weight depends directly on the magnitude of the plant
model, G(s).

5-16

Functions for Control Design

Functions for Control Design
The term control system design refers to the process of synthesizing a
feedback control law that meets design specifications in a closed-loop control
system. The design methods are iterative, combining parameter selection
with analysis, simulation, and insight into the dynamics of the plant. Robust
Control Toolbox software provides a set of commands that you can use for a
broad range of multivariable control applications, including

• H2 control design

• H∞ standard and loop-shaping control design

• H∞ tuning of controllers with fixed structure

• H∞ normalized coprime factor control design

• Mixed H2/H∞ control design

• µ-synthesis via D-K and D-G-K iteration

• Sampled-data H∞ control design

These functions cover both continuous and discrete-time problems. The
following table summarizes the H2 and H∞ control design commands.

Function Description

augw Augments plant weights for mixed-sensitivity
control design

h2hinfsyn Mixed Η2/Η∞ controller synthesis

h2syn Η2 controller synthesis

hinfsyn Η∞ controller synthesis

hinfstruct Η∞ tuning of fixed control structures

loopsyn Η∞ loop-shaping controller synthesis

ltrsyn Loop-transfer recovery controller synthesis

mixsyn Η∞ mixed-sensitivity controller synthesis

ncfsyn Η∞ normalized coprime factor controller synthesis

sdhinfsyn Sample-data Η∞ controller synthesis

5-17

5 H-Infinity and Mu Synthesis

The following table summarizes µ-synthesis control design commands.

Function Description

dksyn Synthesis of a robust controller via µ-synthesis

dkitopt Create a dksyn options object

drawmag Interactive mouse-based sketching and fitting tool

fitfrd Fit scaling frequency response data with LTI model

fitmagfrd Fit scaling magnitude data with stable,
minimum-phase model

5-18

Application of H-Infinity and Mu to Active Suspension Control

Application of H-Infinity and Mu to Active Suspension
Control

Conventional passive suspensions employ a spring and damper between the
car body and wheel assembly, representing a tradeoff between conflicting
performance metrics such as passenger comfort, road holding, and suspension
deflection. Active suspensions allow the designer to balance these objectives
using a hydraulic actuator, controlled by feedback, between the chassis and
wheel assembly.

In this section, you design an active suspension system for a quarter car body
and wheel assembly model using the H∞ control design technique. You will
see the tradeoff between passenger comfort, i.e., minimizing car body travel,
versus suspension travel as the performance objective.

Quarter Car Suspension Model
The quarter car model shown is used to design active suspension control laws.

The sprung mass ms represents the car chassis, while the unsprung mass mus
represents the wheel assembly. The spring, ks, and damper, bs, represent a
passive spring and shock absorber that are placed between the car body and
the wheel assembly, while the spring ktserves to model the compressibility of

5-19

5 H-Infinity and Mu Synthesis

the pneumatic tire. The variables xs, xus, and r are the car body travel, the
wheel travel, and the road disturbance, respectively. The force fs, kN, applied
between the sprung and unsprung masses, is controlled by feedback and
represents the active component of the suspension system. The dynamics of
the actuator are ignored in this example, and assume that the control signal

is the force fs. Defining x1 := xs, x xs2 := � , x3 := xus, and x xus4 := � , the following
is the state-space description of the quarter car dynamics.

�

�

�

�

x x

x
m

k x x b x x f

x x

x
m

k x

s
s s s

us
s

1 2

2 1 3 2 4

3 4

1 1

1

1

=

= − −() + −() −⎡⎣ ⎤⎦

=

= −−() + −() − −() −⎡⎣ ⎤⎦x b x x k x r fs t s3 2 4 3 .

The following component values are taken from reference [9].

ms = 290; % kg
mus = 59; % kg
bs = 1000; % N/m/s
ks = 16182 ; % N/m
kt = 190000; % N/m

A linear, time-invariant model of the quarter car model, qcar, is constructed
from the equations of motion and parameter values. The inputs to the model
are the road disturbance and actuator force, respectively, and the outputs are
the car body deflection, acceleration, and suspension deflection.

A12 = [0 1 0 0; [-ks -bs ks bs]/ms];
A34 = [0 0 0 1; [ks bs -ks-kt -bs]/mus];
B12 = [0 0; 0 10000/ms];
B34 = [0 0; [kt -10000]/mus];
C = [1 0 0 0; A12(2,:); 1 0 -1 0; 0 0 0 0];
D = [0 0; B12(2,:); 0 0; 0 1];
qcar = ss([A12; A34],[B12; B34],C,D)

It is well known [8] that the acceleration transfer function has an invariant
point at the tirehop frequency, 56.7 rad/s. Similarly, the suspension deflection

5-20

Application of H-Infinity and Mu to Active Suspension Control

transfer function has an invariant point at the rattlespace frequency, 23.3
rad/s. The tradeoff between passenger comfort and suspension deflection is
because it is not possible to simultaneously keep both transfer functions small
around the tirehop frequency and in the low frequency range.

Linear H-Infinity Controller Design
The design of linear suspension controllers that emphasize either passenger
comfort or suspension deflection. The controllers in this section are designed
using linear H∞ synthesis [5]. As is standard in the H∞ framework, the
performance objectives are achieved via minimizing weighted transfer
function norms.

Weighting functions serve two purposes in the H∞ framework: They allow
the direct comparison of different performance objectives with the same
norm, and they allow for frequency information to be incorporated into the
analysis. For more details on H∞ control design, refer to [4], [6], [7], [11], and
[13]. A block diagram of the H∞ control design interconnection for the active
suspension problem is shown below.

The measured output or feedback signal y is the suspension deflection
x1–x3. The controller acts on this signal to produce the control input, the
hydraulic actuator force fs. The block Wn serves to model sensor noise in the
measurement channel. Wn is set to a sensor noise value of 0.01 m.

Wn = 0.01;

In a more realistic design, Wn would be frequency dependent and would serve
to model the noise associated with the displacement sensor. The weight Wref

5-21

5 H-Infinity and Mu Synthesis

is used to scale the magnitude of the road disturbances. Assume that the
maximum road disturbance is 7 cm and hence choose Wref = 0.07.

Wref = 0.07;

The magnitude and frequency content of the control force fs are limited by
the weighting function Wact. Choose

W
s

sact = +
+

100
13

50
500

.

The magnitude of the weight increases above 50 rad/s in order to limit the
closed-loop bandwidth.

Wact = (100/13)*tf([1 50],[1 500]);

H-Infinity Control Design 1

The purpose of the weighting functions Wx1
and Wx x1 3− is to keep the car

deflection and the suspension deflection small over the desired frequency
ranges. In the first design, you are designing the controller for passenger
comfort, and hence the car body deflection x1 is penalized.

Wx1 = 8*tf(2*pi*5,[1 2*pi*5]);

The weight magnitude rolls off above 5×2π rad/s to respect a well-known H∞
design rule of thumb that requires the performance weights to roll off before
an open-loop zero (56.7 rad/s in this case). The suspension deflection weight

Wx x1 3− is not included in this control problem formulation.

You can construct the weighted H∞ plant model for control design, denoted
qcaric1, using the sysic command. The control signal corresponds to the
last input to qcaric1, fs. The car body acceleration, which is noisy, is the
measured signal and corresponds to the last output of qcaric1.

systemnames = 'qcar Wn Wref Wact Wx1';
inputvar = '[d1; d2; fs]';
outputvar = '[Wact; Wx1; qcar(3)+Wn]';
input_to_qcar = '[Wref; fs]';
input_to_Wn = '[d2]';

5-22

Application of H-Infinity and Mu to Active Suspension Control

input_to_Wref = '[d1]';
input_to_Wact = '[fs]';
input_to_Wx1 = '[qcar(1)]';
qcaric1 = sysic;

An H∞ controller is synthesized with the hinfsyn command. There is one
control input, the hydraulic actuator force, and one measurement signal, the
car body acceleration.

ncont = 1;
nmeas = 1;
[K1,Scl1,gam1] = hinfsyn(qcaric1,nmeas,ncont);
CL1 = lft(qcar([1:4 3],1:2),K1);
sprintf('H-infinity controller K1 achieved a norm of %2.5g',gam1)
ans =
H-infinity controller K1 achieved a norm of 0.61043

You can analyze the H∞ controller by constructing the closed-loop feedback
system CL1. Bode magnitude plots of the passive suspension and active
suspension are shown in the following figure.

bodemag(qcar(3,1),'k-.',CL1(3,1),'r-',logspace(0,2.3,140))

5-23

5 H-Infinity and Mu Synthesis

H-Infinity Control Design 2
In the second design, you are designing the controller to keep the suspension
deflection transfer function small. Hence the road disturbance to suspension
deflection x1–x3 is penalized via the weighting function Wx1x3. The Wx1x3
weight magnitude rolls off above 10 rad/s to roll off before an open-loop zero
(23.3 rad/s) in the design.

Wx1x3 = 25*tf(1,[1/10 1]);

The car deflection weight Wx1
is not included in this control problem

formulation. You can construct the weighted H∞ plant model for control
design, denoted qcaric2, using the sysic command. As an alternative,
you can create qcaric2 using iconnect objects. The same control and
measurements are used as in the first design.

M = iconnect;
d = icsignal(2);
fs = icsignal(1);

5-24

Application of H-Infinity and Mu to Active Suspension Control

ycar = icsignal(size(qcar,1));
M.Equation{1} = equate(ycar,qcar*[Wref*d(1); fs]);
M.Input = [d;fs];
M.Output = [Wact*fs;Wx1x3*ycar(1);ycar(2)+Wn*d(2)];
qcaric2 = M.System;

The second H∞ controller is synthesized with the hinfsyn command.

[K2,Scl2,gam2] = hinfsyn(qcaric2,nmeas,ncont);
CL2 = lft(qcar([1:4 2],1:2),K2);
sprintf('H-infinity controller K2 achieved a norm of %2.5g',gam2)
ans =
H-infinity controller K2 achieved a norm of 0.89949

Recall that this H∞ control design emphasizes minimization of suspension
deflection over passenger comfort, whereas the first H∞ design focused on
passenger comfort.

You can analyze the H∞ controller by constructing the closed-loop feedback
system CL2. Bode magnitude plots of the transfer function from road
disturbance to suspension deflection for both controllers and the passive
suspension system are shown in the following figure.

bodemag(qcar(3,1),'k-.',CL1(3,1),'r-',CL2(3,1),'b.',...
logspace(0,2.3,140))

5-25

5 H-Infinity and Mu Synthesis

The dotted and solid lines in the figure are the closed-loop frequency responses
that result from the different performance weighting functions selected.
Observe the reduction in suspension deflection in the vicinity of the tirehop
frequency, ω1= 56.7 rad/s, and the corresponding increase in the acceleration
frequency response in this vicinity. Also, compared to design 1, a reduction in
suspension deflection has been achieved for frequencies below the rattlespace
frequency, ω2= 23.3 rad/s.

The second H∞ control design attenuates both resonance modes, whereas the
first controller focused its efforts on the first mode, the rattlespace frequency
at 23.3 rad/s.

bodemag(qcar(2,1),'k-.',CL1(2,1),'r-',CL2(2,1),'b.',...
logspace(0,2.3,140))

5-26

Application of H-Infinity and Mu to Active Suspension Control

All the analysis till now has been in the frequency domain. Time-domain
performance characteristics are critical to the success of the active suspension
system on the car. Time response plots of the two H∞ controllers are shown
in following figures. The dashed, solid, and dotted lines correspond to
the passive suspension, H∞ controller 1, and controller 2 respectively. All
responses correspond to the road disturbance r(t):

r(t) = a(1 – cos8πt) for 0 ≤ t ≤ 0.25s

r(t) = 0 otherwise.

where a=0.025 corresponds to a road bump of peak magnitude 5 cm. In the
following plots, observe that the acceleration response of design 1 to the 5
cm bump is very good; however the suspension deflection is larger than for
design 2. This is because suspension deflection was not penalized in this
design. The suspension deflection response of design 2 to a 5 cm bump is good.
However, the acceleration response to the 5 cm bump is much inferior to
design 1. Once again this is because car body displacement and acceleration
were not penalized in design 2.

5-27

5 H-Infinity and Mu Synthesis

time = 0:0.005:1;
roaddist = 0*time;
roaddist(1:51) = 0.025*(1-cos(8*pi*time(1:51)));
[p1,t] = lsim(qcar(1:4,1),roaddist,time);
[y1,t] = lsim(CL1(1:4,1),roaddist,time);
[y2,t] = lsim(CL2(1:4,1),roaddist,time);
subplot(221)
plot(t,y1(:,1),'b-',t,y2(:,1),'r.',t,p1(:,1),'k--',t,...
roaddist,'g-.')
title('Body Travel')
ylabel('x_1 (m)')

subplot(222)
plot(t,y1(:,2),'b-',t,y2(:,2),'r.',t,p1(:,2),'k--')
title('Body Acceleration')
ylabel('Accel (m/s/s)')

subplot(223)
plot(t,y1(:,3),'b-',t,y2(:,3),'r.',t,p1(:,3),'k--')
title('Suspension Deflection')
xlabel('Time (sec)')
ylabel('x_1 - x_3 (m)')

subplot(224)
plot(t,y1(:,4),'b-',t,y2(:,4),'r.',t,p1(:,4),'k--')
title('Control Force')
xlabel('Time (sec)')
ylabel('fs (10kN)')

5-28

Application of H-Infinity and Mu to Active Suspension Control

Designs 1 and 2 represent extreme ends of the performance tradeoff spectrum.
This section described synthesis of H∞ to achieve the performance objectives
on the active suspension system. Equally, if not more important, is the design
of controllers robust to model error or uncertainty.

The goal of every control design is to achieve the desired performance
specifications on the nominal model as well as other plants that are close to
the nominal model. In other words, you want to achieve the performance
objectives in the presence of model error or uncertainty. This is called robust
performance. In the next section, you will design a controller that achieves
robust performance using the µ-synthesis control design methodology. The
active suspension system again serves as the example. Instead of assuming a
perfect actuator, a nominal actuator model with modeling error is introduced
into the control problem.

Control Design via Mu Synthesis
The active suspension H∞ controllers designed in the previous section ignored
the hydraulic actuator dynamics. In this section, you will include a first-order

5-29

5 H-Infinity and Mu Synthesis

model of the hydraulic actuator dynamics as well as an uncertainty model to
account for differences between the actuator model and the actual actuator
dynamics.

The nominal model for the hydraulic actuator is

actnom = tf(1,[1/60 1]);

The actuator model itself is uncertain. You can describe the actuator model
error as a set of possible models using a weighting function. At low frequency,
below 4 rad/s, it can vary up to 10% from its nominal value. Around 4 rad/s the
percentage variation starts to increase and reaches 400% at approximately
800 rad/s. The model uncertainty is represented by the weight Wunc, which
corresponds to the frequency variation of the model uncertainty and the
uncertain LTI dynamic object Δunc defined as unc.

Wunc = 0.10*tf([1/4 1],[1/800 1]);
unc = ultidyn('unc',[1 1]);
actmod = actnom*(1+ Wunc*unc)
USS: 2 States, 1 Output, 1 Input, Continuous System

unc: 1x1 LTI, max. gain = 1, 1 occurrence

The actuator model actmod is an uncertain state-space system. The following
Bode plot shows the nominal actuator model, actnom, denoted with a '+'
symbol, and 20 random actuator models described by actmod.

bode(actnom,'r+',actmod,'b',logspace(-1,3,120))

5-30

Application of H-Infinity and Mu to Active Suspension Control

The uncertain actuator model actmod represents the model of the hydraulic
actuator used for control. The revised control design interconnection diagram
is

You are designing the controller for passenger comfort, as in the first H∞
control design, hence the car body deflection x1 is penalized with Wx1. The
uncertain weighted H∞ plant model for control design, denoted qcaricunc,

5-31

5 H-Infinity and Mu Synthesis

is using the sysic command. As previously described, the control signal
corresponds to the last input to qcaric1, fs. The car body acceleration,
which is noisy, is the measured signal and corresponds to the last output of
qcaricunc.

systemnames = 'qcar Wn Wref Wact Wx1 actmod';
inputvar = '[d1; d2; fs]';
outputvar = '[Wact; Wx1; qcar(2)+Wn]';
input_to_actmod = '[fs]';
input_to_qcar = '[Wref; fs]';
input_to_Wn = '[d2]';
input_to_Wref = '[d1]';
input_to_Wact = '[fs]';
input_to_Wx1 = '[qcar(1)]';
qcaricunc = sysic;

A µ-synthesis controller is synthesized using D-K iteration with the dksyn
command. The D-K iteration procedure is an approximation to µ-synthesis
that attempts to synthesize a controller that achieves robust performance [1],
[10], [11], [12]. There is one control input, the hydraulic actuator force, and
one measurement signal, the car body acceleration.

[Kdk,CLdk,gdk] = dksyn(qcaricunc,nmeas,ncont);
CLdkunc = lft(qcar([1:4 2],1:2)*blkdiag(1,actmod),Kdk);
sprintf('mu-synthesis controller Kdk achieved a norm of %2.5g',gdk)
ans =
mu-synthesis controller Kdk achieved a norm of 0.53946

You can analyze the performance of the µ-synthesis controller by constructing
the closed-loop feedback system CLdkunc. Bode magnitude plots of the
passive suspension and active suspension systems on the nominal actuator
model with H∞ design 1 and the µ-synthesis controller are shown in the
following figure. Note that the µ-synthesis controller better attenuates the
first resonant mode at the expense of decreased performance below 3 rad/s.

bodemag(qcar(3,1),'k-.',CL1(3,1),'r-',CLmuunc.Nominal(3,1),'b.',...
logspace(0,2.3,140))

5-32

Application of H-Infinity and Mu to Active Suspension Control

It is important to understand how robust both controllers are in the presence
of model error. You can simulate the active suspension system with the H∞
design 1 and the µ-synthesis controller. The uncertain closed-loop systems,
CL1unc and CLdkunc, are formed with K1 and Kdk, respectively. For each
uncertain system, 40 random plant models in the model set are simulated. As
you can see, both controllers are robust and perform well in the presence of
actuator model error. The µ-synthesis controller Kdk achieves slightly better
performance than H∞ design 1.

CL1unc = lft(qcar([1:4 2],1:2)*blkdiag(1,actmod),K1);
[CLdkunc40,dksamples] = usample(CLdkunc,40);
CL1unc40 = usubs(CL1unc,dksamples);
nsamp = 40;
for i=1:nsamp

[ymusamp,t] = lsim(CLmuunc40(1:4,1,i),roaddist,time);
plot(t,ymusamp(:,1),'b')
hold on

5-33

5 H-Infinity and Mu Synthesis

end
[ymusamp,t] = lsim(CLmuunc.Nominal(1:4,1),roaddist,time);
plot(t,ymusamp(:,1),'r+',t,roaddist,'m--')

for i=1:nsamp
[y1samp,t] = lsim(CL1unc40(1:4,1,i),roaddist,time);
plot(t,y1samp(:,1),'b')
hold on

end
[y1samp,t] = lsim(CL1unc.Nominal(1:4,1),roaddist,time);

plot(t,y1samp(:,1),'r+',t,roaddist,'m--')

5-34

Application of H-Infinity and Mu to Active Suspension Control

5-35

5 H-Infinity and Mu Synthesis

H-Infinity Tuning of Fixed Control Structures

In this section...

“About H-Infinity Synthesis of Structured Controllers” on page 5-36

“Formulating Design Requirements as H-Infinity Constraints” on page 5-37

“Describing your Control Architecture” on page 5-38

“Defining the Tunable Controller Elements” on page 5-45

“Tuning the Controller Parameters” on page 5-46

“Validating the Controller Design” on page 5-48

“Application Examples” on page 5-49

About H-Infinity Synthesis of Structured Controllers
The hinfstruct command lets you use the frequency-domain methods of
H∞ synthesis to tune control systems that have pre-defined architectures
and controller structures. To use hinfstruct, you describe the tunable
components of your control system using parametric models. hinfstruct
tunes the parameters of those models by minimizing the closed-loop gain from
the system inputs to the system outputs (the H∞ norm).

Range of Applicability of Structured H-Infinity Synthesis
You can use hinfstruct to perform structured H∞ synthesis for virtually any
SISO or MIMO feedback architecture. For example, you can design:

• A single-loop SISO control architecture where the controller has a fixed
structure. For example, a fixed-structure controller can be a fixed-order
transfer function, a PID controller, or a PID controller plus a filter.

• A MIMO control architecture where the controller has fixed order and
structure. For example, a 2-by-2 decoupling matrix plus two PI controllers
is a MIMO controller of fixed order and structure.

• A multiple-loop SISO or MIMO control architecture, including nested or
cascading loops, with multiple gains and dynamic components to tune.

5-36

H-Infinity Tuning of Fixed Control Structures

Difference Between Structured and Traditional H-Infinity
Synthesis
Traditional H∞ synthesis (performed using the hinfsyn or loopsyn
commands) designs a full-order centralized controller. Such controllers often
have high-order dynamics. Furthermore, traditional H∞ synthesis provides no
way to impose structure on the controller. Thus, the results can be difficult to
map to your specific real-world control architecture.

In contrast, structured H∞ synthesis allows you to describe and tune the
specific control system you are working with. You can specify your control
architecture — the number and configuration of feedback loops, sensor
signals, and actuator signals that make up your control system. You can also
specify the complexity and structure of each tunable component in your control
system, such as PID controllers, gains, and fixed-order transfer functions.

Overview of Structured H-Infinity Synthesis Workflow
Performing structured H∞ synthesis requires the following steps:

1 Formulate your design requirements as H∞ constraints, which are
constraints on the closed-loop gains from the system inputs to the system
outputs.

2 Express your control architecture in standard form. This step includes
deriving the augmented plant, Pdes, which includes all the fixed
components of your control architecture.

3 Specify the tunable elements of your system as parametric models.

4 Tune the control system using hinfstruct

5 Validate the tuned control system.

Formulating Design Requirements as H-Infinity
Constraints
Control design requirements are typically performance measures such as
response speed, control bandwidth, roll-off, and steady-state error. To use H∞,
express the design requirements as constraints on the closed-loop gain.

5-37

5 H-Infinity and Mu Synthesis

One way to formulate design requirements in terms of on the closed-loop gain
is loop shaping. Loop shaping is a common systematic technique for defining
control design requirements for H∞ synthesis. In loop shaping, you first
express design requirements as open-loop gain requirements. For example, a
requirement of good reference tracking and disturbance rejection is equivalent
to high (>1) open-loop gain at low frequency. A requirement of insensitivity to
measurement noise or modeling error is equivalent to a low (<1) open-loop
gain at high frequency. You can then convert these open-loop requirements to
constraints on the closed-loop gain using weighting functions. By building the
weighting functions into your augmented plant Pdes (see “Describing your
Control Architecture” on page 5-38), you ensure that minimizing the H∞ tunes
the control system to meet your requirements.

For examples of how to formulate design requirements for H∞ synthesis using
loop shaping, see the following demos:

• Loop Shaping Design with HINFSTRUCT

• Tuning of a Fixed-Structure Autopilot

For more information about constructing weighting functions from design
requirements, see “H-Infinity Performance” on page 5-9.

Describing your Control Architecture
Every control system uses a different control architecture. To use hinfstruct,
transform your control system to Standard Form.

About the Standard Form
The Standard Form consists of an augmented plant Pdes and a controller
block C, arranged in the following configuration.

5-38

H-Infinity Tuning of Fixed Control Structures

�

� �

�

�

���	

�

�

������

�

�� �

� � �

�

The augmented plant Pdes is a linear model that includes all the fixed (not
tunable) components of the control system. Pdes can also include weighting
functions that represent your design requirements, as shown in the demo
Loop Shaping Design with HINFSTRUCT.

The aggregate controller C contains the parametrized (tunable) controller
elements C1, . . . , CN. Each controller element can be, for example, a static
gain, a PID controller, or a fixed-order transfer function. hinfstruct tunes
the parameters of the controller elements to minimize the gain from the
external inputs w to the external outputs z of the closed-loop system.

The signal y represents the inputs to each of the tunable elements. u
represents the outputs of the tunable elements. The signals w, z, u, and y can
be scalar or vector signals.

5-39

5 H-Infinity and Mu Synthesis

You can rearrange any control architecture into this Standard Form. To
understand why, consider the closed-loop system as an aggregation of fixed
elements interacting with the controller elements:

�������	�
��
������
�
���
��
���

���������
���

��

��

��

�����

��
�����
����
�

�

��
�����
�
��
�

�
	�

��

	� ��

��

	�

����

To rewrite this in Standard Form, define

u u u

y y y
N

N

: , ,

: , , ,

= []
= []

1

1

…

…

and group the tunable control elements C1, . . . , CN into a single block C. Pdes
includes all the fixed components of the control architecture — actuators,
sensors, and other non-tunable elements — and their interconnections.

Deriving the Augmented Plant Pdes
To derive the augmented plant Pdes, you create a linear model that
includes all of the fixed elements of your control system along with their
interconnections. The augmented plant also includes any weighting functions
that represent your design requirements. There are two ways to obtain the
linear model Pdes:

• Construct Pdes using Control System Toolbox commands.

5-40

H-Infinity Tuning of Fixed Control Structures

• Obtain Pdes from a Simulink® model using Simulink® Control Design™
commands.

Constructing the Augmented Plant Using Control System Toolbox
Commands.

To construct Pdes in MATLAB, use commands such as tf, zpk, and ss to
model the fixed elements of your control system. Then use the connect
command to join them together into a model that maps [w,u] to [z,y]. Also
include any weighting functions that represent your design requirements.

For example, consider the following control architecture.

�
�� � � ���

�	

��
� �

�	

���� ����
�

���� ��

��

��

This control system represents a head-disk assembly (HDA) in a hard disk
drive. The architecture includes the plant G in a feedback loop with a PI
controller C and a filter. It also includes the weighting functions LS and 1/LS.
The tunable parameters are the PI gains of C and the filter parameter a. For
more detailed discussion of the HDA system, see the demo Loop Shaping
Design with HINFSTRUCT.

5-41

5 H-Infinity and Mu Synthesis

To construct Pdes, first model all the fixed components of the HDA: the plant
G, the integrator 1/s, and the weighting functions LS and 1/LS. (See the
demo for derivation of the weighting functions.) Name the input and output
signals of each element. You use them to define the architecture when you
connect the elements.

% load the plant G from a saved file
load hinfstruct_demo G

% define the integrator
Integ = tf(1,[1 0],'InputName','uint','OutputName','yint');

% define the weighting functions
wc = 1000; % target crossover
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);
We = LS; We.InputName = 'e'; We.OutputName = 'ew';
Wn = 1/LS; Wn.InputName = 'nw'; Wn.OutputName = 'n';

Also model the two sum functions:

Sum1 = sumblk('e','r','yf','+-');
Sum2 = sumblk('uint','y','n','yf','++-');

Finally, use connect to join all the elements in the correct architecture. The
resulting model is Pdes:

Pdes = connect(G,Integ,Wn,We,Sum1,Sum2,...
{'r','nw','u','yf'},{'y','ew','e','yint'});

(See “Model Interconnection Functions” in the Control System Toolbox User’s
Guide for more information about connecting models.)

Pdes contains all the fixed elements of the HDA and their interconnections.
Pdes does not include the tunable blocks — the PI controller C and the gain
a. However, Pdes has outputs e and yint, corresponding to the inputs of C
and a. Pdes also has inputs u and yf, corresponding to the outputs of C and a.
Therefore, the Standard Form of the HDA control architecture is:

5-42

H-Infinity Tuning of Fixed Control Structures

�

�

�

�	 ����

�� ��

�

����

�

�

�

�

���

Obtaining the Augmented Plant Using Simulink Control Design
Commands.

If you have Simulink Control Design software, you can use the linlft
command to extract Pdes from a Simulink model of your system. linlft
linearizes the elements of the model that you specify for inclusion in Pdes, so
your Simulink model can be non-linear.

For example, consider the Simulink model rct_diskdrive of the HDA control
architecture. For a more detailed discussion of this model see the demo Loop
Shaping Design with HINFSTRUCT.

5-43

5 H-Infinity and Mu Synthesis

To create Pdes using linlft, open the model and extract the linearization
I/O points. This model includes predefined linearization I/O points on the
signals r and n (input points) and e and y (output points). These I/O points
correspond to the external inputs and outputs of the closed-loop system.
(For more information about linearization and linearization I/O points, see
“Linearization” in the Simulink Control Design User’s Guide.)

open('rct_diskdrive');
io = getlinio('rct_diskdrive'); % get linearization I/Os

Next, define the list of tunable controller blocks to exclude from the
Standard-Form plant.

TunableBlocks = {'rct_diskdrive/C';'rct_diskdrive/a'};

Call linlft with the I/O points and tunable blocks to exclude.

slP = linlft('rct_diskdrive',io,TunableBlocks);

These commands create a linear model containing only the fixed elements of
the control system. To complete the definition of Pdes, define any weighting
functions that represent your design requirements and connect them in
series with slP. (See the demo for discussion of the values of the weighting
functions.)

5-44

H-Infinity Tuning of Fixed Control Structures

% define the weighting function
wc = 1000; % target crossover
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);

Pdes = blkdiag(1,LS,eye(2)) * slP * blkdiag(1,1/LS,1,1);

As in the MATLAB case, the definition of Pdes includes outputs e and
yint, and inputs u and yf. These outputs and inputs connect to the
tunable elements C and a, which are not part of Pdes. Therefore, the model
rct_diskdrive is equivalent to the Standard-Form control system shown
in the MATLAB case.

Defining the Tunable Controller Elements
To define the tunable elements of your control architecture, Robust Control
Toolbox includes parametric model objects called control design blocks. The
control design blocks allow you to represent tunable control elements as
models having parameters that hinfstruct can tune. Control design blocks
support the following parametric model types:

Model Type Description

ltiblock.gain Parametric gain block. The
parametric gain block can have
any number of inputs and outputs.
Tunable parameters are the gains
across each input-output channel.

ltiblock.pid Parametric PID block.
The parametric PID block
supports proportional-only
(P), proportional-integral (PI),
proportional-derivative (PD), and
proportional-integral-derivative
(PID) types. Blocks with derivative
action include a first-order filter
on the derivative action. Tunable
parameters are the PID gains and
derivative filter time constant.

5-45

5 H-Infinity and Mu Synthesis

Model Type Description

ltiblock.tf Parametric fixed-order SISO
transfer function block. Tunable
parameters are the numerator and
denominator coefficients.

ltiblock.ss Parametric fixed-order state-space
block. The parametric state-space
block can have any number of
inputs, outputs, and states. Tunable
parameters are the elements of the
state-space matrices.

Use the control design blocks to create tunable representations of the tunable
elements of your control system. Returning to the example discussed in
“Deriving the Augmented Plant Pdes” on page 5-40, the HDA system contains
a PI controller C and a filter gain a. Use ltiblock.pid and ltiblock.gain to
define these elements as parametric blocks.

C0 = ltiblock.pid('C','pi'); % tunable PI
a0 = ltiblock.gain('a',1); % filter gain

For more information about the control design blocks, see the ltiblock.gain,
ltiblock.pid, ltiblock.tf, and ltiblock.ss reference pages.

Tuning the Controller Parameters
After you write your plant in standard form as an augmented plant Pdes
and tunable control design blocks, use hinfstruct to tune the controller
parameters.

Running hinfstruct
hinfstruct takes as inputs the linear model Pdes and a cell array of the
tunable control design blocks.

For example, to tune controller parameters for the example discussed in
“Deriving the Augmented Plant Pdes” on page 5-40 and “Defining the Tunable
Controller Elements” on page 5-45, enter the following command:

5-46

H-Infinity Tuning of Fixed Control Structures

[TunedBlocks,gamma,info] = hinfstruct(Pdes,{C0,a0});

This command returns the following outputs:

• TunedBlocks, a cell array containing the tuned versions of C0 and a0.
hinfstruct optimizes the parameter values to minimize the closed loop
gain from the external inputs w to the external outputs z.

• gamma, the minimum closed-loop gain value.

• info, a structure containing additional information about the minimization
runs.

Interpreting the Outputs of hinfstruct
The elements of the cell array TunedBlocks are control design blocks of the
same type as the input blocks. For example, TunedBlocks{1} is a modified
version of C0 that contains the tuned PI controller parameters.

To convert TunedBlocks to ordinary (non-parametric) LTI models, use LTI
model commands such as tf, ss, and pid. For example:

C = pid(TunedBlocks{1}) % convert to pid object
a = tf(TunedBlocks{2}) % convert to tf object

These commands produce the result:

Continuous-time PI controller in parallel form:

1
Kp + Ki * ---

s

with Kp = 0.00084608, Ki = 0.010272

Transfer function:
5486

gamma is the minimum closed-loop gain value. Examine gamma to determine
how close the tuned system is to meeting your design constraints. If you use
the loop-shaping approach, a typical design constraint is gamma < 1.

5-47

5 H-Infinity and Mu Synthesis

The value of gamma that hinfstruct returns is a local minimum of the gain
minimization problem. To increase the likelihood of finding parameter
values that meet your design requirements, use the RandomStart option to
hinfstruct. Setting RandomStart to an integer N > 0 causes hinfstruct
to run the optimization N additional times, beginning from parameter values
it chooses randomly. For example:

opts = hinfstructOptions('Display','final','RandomStart',5);
[TunedBlocks,gamma,info] = hinfstruct(Pdes,{C0,a0},opts);

You can examine gamma for each run to identify an optimization result that
meets your design requirements.

For more details about hinfstruct, its options, and its outputs, see the
hinfstruct and hinfstructOptions reference pages.

Validating the Controller Design
To validate the hinfstruct control design, convert the output control design
blocks to ordinary LTI model objects, as described in “Interpreting the
Outputs of hinfstruct” on page 5-47.

Use these LTI models to examine the performance of the tuned system.

Validating the Design in MATLAB
In MATLAB, incorporate the tuned LTI models into your closed-loop system
using commands such as connect and feedback. You can then analyze
open-loop or closed-loop performance using other Control System Toolbox
tools.

For an example, see the Robust Control Toolbox demo Loop Shaping Design
with HINFSTRUCT.

Validating the Design in Simulink
If you create Pdes using linlft, as described in “Obtaining the Augmented
Plant Using Simulink® Control Design Commands” on page 5-43, you are
designing for a linearization of your plant. Therefore, it is advisable to
validate the tuned parameters in your nonlinear model. One way to do so is

5-48

H-Infinity Tuning of Fixed Control Structures

to set the block parameters of the controller blocks in your model equal to
the values of the tuned parameters.

For example, in the rct_diskdrive model, enter C.Kp and C.Ki in the
Proportional (P) and Integral (I) fields of the PI Controller block dialogue
box, respectively. You can then simulate your model to verify that the tuned
parameters meet your performance requirements.

For another example, see the Robust Control Toolbox demo Multi-Loop PID
Control of a Robot Arm.

Application Examples
For examples of performing structured H∞ synthesis on several different types
of control systems, see the following Robust Control Toolbox demos:

• Loop Shaping Design with HINFSTRUCT

• Tuning of a Fixed-Structure Autopilot

• Decoupling Controller for a Distillation Column

• Multi-Loop PID Control of a Robot Arm

5-49

5 H-Infinity and Mu Synthesis

Bibliography
[1] Balas, G.J., and A.K. Packard, “The structured singular value
µ-framework,” CRC Controls Handbook, Section 2.3.6, January, 1996, pp.
671-688.

[2] Ball, J.A., and N. Cohen, “Sensitivity minimization in an H∞ norm:
Parametrization of all suboptimal solutions,” International Journal of Control,
Vol. 46, 1987, pp. 785-816.

[3] Bamieh, B.A., and Pearson, J.B., “A general framework for linear periodic
systems with applications to H∞ sampled-data control,” IEEE Transactions on
Automatic Control, Vol. AC-37, 1992, pp. 418-435.

[4] Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., “State-space
solutions to standard H2 and H∞ control problems,” IEEE Transactions on
Automatic Control, Vol. AC-34, No. 8, August 1989, pp. 831-847.

[5] Fialho, I., and Balas, G.J., “Design of nonlinear controllers for active
vehicle suspensions using parameter-varying control synthesis,” Vehicle
Systems Dynamics, Vol. 33, No. 5, May 2000, pp. 351-370.

[6] Francis, B.A., A course in H∞ control theory, Lecture Notes in Control and
Information Sciences, Vol. 88, Springer-Verlag, Berlin, 1987.

[7] Glover, K., and Doyle, J.C., “State-space formulae for all stabilizing
controllers that satisfy an H∞ norm bound and relations to risk sensitivity,”
Systems and Control Letters, Vol. 11, pp. 167-172, August 1989. International
Journal of Control, Vol. 39, 1984, pp. 1115-1193.

[8] Hedrick, J.K., and Batsuen, T., “Invariant Properties of Automotive
Suspensions,” Proceedings of The Institution of Mechanical Engineers, 204
(1990), pp. 21-27.

[9] Lin, J., and Kanellakopoulos, I., “Road Adaptive Nonlinear Design of
Active Suspensions,” Proceedings of the American Control Conference, (1997),
pp. 714-718.

5-50

Bibliography

[10] Packard, A.K., Doyle, J.C., and Balas, G.J., “Linear, multivariable robust
control with a µ perspective,” ASME Journal of Dynamics, Measurements and
Control: Special Edition on Control, Vol. 115, No. 2b, June, 1993, pp. 426-438.

[11] Skogestad, S., and Postlethwaite, I., Multivariable Feedback Control:
Analysis & Design, John Wiley & Sons, 1996.

[12] Stein, G., and Doyle, J., “Beyond singular values and loopshapes,” AIAA
Journal of Guidance and Control, Vol. 14, Num. 1, January, 1991, pp. 5-16.

[13] Zames, G., “Feedback and optimal sensitivity: model reference
transformations, multiplicative seminorms, and approximate inverses,” IEEE
Transactions on Automatic Control, Vol. AC-26, 1981, pp. 301-320.

5-51

5 H-Infinity and Mu Synthesis

5-52

A

Examples

Use this list to find examples in the documentation.

A Examples

Getting Started
“Example: ACC Benchmark Problem” on page 1-3
“Example: ACC Two-Cart Benchmark Problem” on page 1-7
“Example: Designing a Controller with LOOPSYN” on page 1-10
“Example: NASA HiMAT Controller Order Reduction” on page 1-14
“Example: NASA HiMAT Design Using MIXSYN” on page 2-22

A-2

Index

IndexSymbols and Numerics
μ-synthesis control design 5-29
2-norm

definition 5-2

A
actmod actuator model 5-30
actnom nominal actuator model 5-30
additive error bound 3-5
atoms 4-2

B
block diagrams

direction of arrows 5-4
bstmr 3-10

C
complementary sensitivity 2-5
crossover frequency wc 2-20

D
Delta1 object 4-15
Delta2 object 4-15
design goals

crossover 2-20
performance 2-20
roll-off 2-20
stability robustness 2-20

disturbance attenuation 2-6
dksyn 5-32

E
Euclidean norms 5-8

F
feedback 4-9
forbidden regions 2-11
frequency domain uncertainty

adding to the model 4-15
fundamental limits

right-half-plane poles 2-20
right-half-plane zeros 2-20

G
gain reduction tolerance 2-12
gain/phase margins

MIMO system 2-11
get

viewing the properties of the uncertain
system 4-14

H
H∞

loop shaping 1-10
mixed-sensitivity 1-10
mixsyn 2-21
norm 2-4
sampled-data 1-10

H∞ control
performance objectives 5-10

H2
norm 2-4

H2 and H∞ control design commands
summary 5-17

Hankel singular value
NCF 1-15

HiMAT aircraft model 1-10
hinfsyn 5-23

I
InputGroup property 4-15

Index-1

Index

InputName property 4-15

L
L2-norm 5-2
linear matrix inequalities

LMI solvers 1-18
LMI solvers 1-18
loop shaping 1-10

loopsyn 2-5
loop transfer function matrix 2-5
loopmargin 4-19
loopsens 4-17

M
makeweight utility 4-7
maxgain variable 4-12
mixed H∞/H2

controller synthesis 1-10
mixed-sensitivity cost function 2-21
mixed-sensitivity loop shaping 2-21
model reduction 1-14

additive error methods 3-7
balanced stochastic method 3-10
large-scale models 3-14
multiplicative error method 3-9
normalized coprime factor truncation 3-15

model reduction routines 3-5
models

with uncertain real coefficients 4-4
modreal 3-14
Monte Carlo random sample 1-5
multiplicative (relative) error bound 3-5
multiplicative uncertainty 2-2

N
ncfmr 3-15
NominalValue property 4-15
norm 4-22

norms 5-2
H∞ 2-3
H2 2-3
performance 5-3

O
OutputGroup property 4-15
OutputName property 4-15

P
Percentage property 4-3
performance weights 5-8
perturbation

additive 2-6
multiplicative 2-6

PlusMinus property 4-3

R
Range property 4-3
reduce 3-7
report variable 4-11
robust performance

defined 5-29
robustness

of stability 2-20
robustness analysis

Monte Carlo 1-7
worst case 1-7

robustperf 4-25
robuststab 4-10
roll-off 2-20

S
schurmr 3-7
sensitivity 2-5
singular values 2-3

properties of 2-3

Index-2

Index

stabmarg variable 4-11
sysic 5-22

U
ultidyn 4-6
uncertain elements 4-2
uncertain LTI system 1-3
uncertain parameters 4-3
uncertain state-space object. See USS object
uncertainty

capturing 4-7
ureal 4-3
USS object 1-5

usubs
substituting worst-case values for uncertain

elements 4-12

W
W1 and W2 shaping filters 4-15
wcgain

computing worst-case peak gain 4-11
wcsens 4-25
wcu variable 4-12
weighted norms 5-4
worst-case

peak gain 1-9

Index-3

	toc
	Introduction
	Product Overview
	Required Software

	Modeling Uncertainty
	Example: ACC Benchmark Problem

	Worst-Case Performance
	Example: ACC Two-Cart Benchmark Problem

	Synthesis of Robust MIMO Controllers
	Example: Designing a Controller with LOOPSYN

	Model Reduction and Approximation
	Example: NASA HiMAT Controller Order Reduction

	LMI Solvers
	Extends Control System Toolbox Capabilities
	About the Authors
	Bibliography

	Multivariable Loop Shaping
	Tradeoff Between Performance and Robustness
	Norms and Singular Values
	Properties of Singular Values

	Typical Loop Shapes, S and T Design
	Singular Values
	Guaranteed Gain/Phase Margins in MIMO Systems

	Using LOOPSYN to Do H-Infinity Loop Shaping
	Example: NASA HiMAT Loop Shaping
	Design Specifications
	MATLAB Commands for a LOOPSYN Design
	Fine-Tuning the LOOPSYN Target Loop Shape Gd to Meet Design Goal

	Using MIXSYN for H-Infinity Loop Shaping
	Example: NASA HiMAT Design Using MIXSYN

	Loop-Shaping Commands

	Model Reduction for Robust Control
	Introduction
	Hankel Singular Values

	Overview of Model Reduction Techniques
	Additive Error Bound
	Multiplicative (Relative) Error Bound

	Approximating Plant Models — Additive Error Methods
	Approximating Plant Models — Multiplicative Error Method
	Using Modal Algorithms
	Rigid Body Dynamics

	Reducing Large-Scale Models
	Using Normalized Coprime Factor Methods
	Bibliography

	Robustness Analysis
	Uncertainty Modeling
	Creating Uncertain Models of Dynamic Systems
	Creating Uncertain Parameters
	Quantifying Unmodeled Dynamics

	Robustness Analysis
	Multiinput, Multioutput Robustness Analysis
	Adding Independent Input Uncertainty toEachChannel
	Closed-Loop Robustness Analysis
	Nominal Stability Margins
	Robustness of Stability Model Uncertainty

	Worst-Case Gain Analysis
	Summary of Robustness Analysis Tools

	H-Infinity and Mu Synthesis
	Interpretation of H-Infinity Norm
	Norms of Signals and Systems
	Using Weighted Norms to Characterize Performance

	H-Infinity Performance
	Performance as Generalized Disturbance Rejection
	Interconnection with Typical MIMO Performance Objectives

	Robustness in the H-Infinity Framework

	Functions for Control Design
	Application of H-Infinity and Mu to Active Suspension Control
	Quarter Car Suspension Model
	Linear H-Infinity Controller Design
	H-Infinity Control Design 1
	H-Infinity Control Design 2
	Control Design via Mu Synthesis

	H-Infinity Tuning of Fixed Control Structures
	About H-Infinity Synthesis of Structured Controllers
	Range of Applicability of Structured H-Infinity Synthesis
	Difference Between Structured and Traditional H-Infinity Synthes
	Overview of Structured H-Infinity Synthesis Workflow

	Formulating Design Requirements as H-Infinity Constraints
	Describing your Control Architecture
	About the Standard Form
	Deriving the Augmented Plant Pdes

	Defining the Tunable Controller Elements
	Tuning the Controller Parameters
	Running hinfstruct
	Interpreting the Outputs of hinfstruct

	Validating the Controller Design
	Validating the Design in MATLAB
	Validating the Design in Simulink

	Application Examples

	Bibliography

	Examples
	Getting Started

	Index

	tables
	Top-Level Model Reduction Command
	Normalized Coprime Balanced Model Reduction Command
	Additive Error Model Reduction Commands
	Multiplicative Error Model Reduction Command
	Additional Model Reduction Tools

